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Abstract—In this paper, we propose MCformer - a novel deep
neural network for the automatic modulation classification task of
complex-valued raw radio signals. MCformer architecture lever-
ages convolution layer along with self-attention based encoder
layers to efficiently exploit temporal correlation between the
embeddings produced by convolution layer. MCformer provides
state of the art classification accuracy at all signal-to-noise ratios
in the RadioML2016.10b data-set with significantly less number
of parameters which is critical for fast and energy-efficient
operation.

Index Terms—modulation recognition, cognitive radio, dy-
namic spectrum access, deep learning and attention mechanism.

I. INTRODUCTION

Automatic modulation classification (AMC) pertains to the
task of classifying the modulation type from the complex-
valued raw radio signals with no a priori information about
the signal or the channel parameters. AMC provides insight
into spectrum usage and the type of transmitters present in the
vicinity. Consecutively, it plays an important role in dynamic
spectrum access, cognitive radios, and software defined radios
[1]. Recently, there has been a series of works demonstrating
the superior performance of Deep Neural Networks (DNNs)
over classical approaches involving handcrafted features and
likelihood-based methods. This performance of DNNs can
be attributed to their ability to automatically learn feature
representations for the AMC instead of hand-crafted features
[2]-[6]. Most of these DNN architectures are obtained in the
field of computer vision, natural language processing, speech
recognition etc. However, the latency and energy efficiency
requirement for successful application of DNNs on raw radio
signals in wireless communication are much more stringent.
Therefore, in the area of wireless communication AMC has
become an important problem through which research commu-
nity is trying to find an appropriate DNN architecture suited
for raw radio signals.

Motivated by excellent performance of DNNs in AMC in
this paper we propose the MCformer - a transformer-based
DNN for AMC. MCformer uses a convolution layer to obtain
a high dimensional embedding for each in-phase (I) and
quadrature (Q) sample pair of complex-valued radio signal.
Each component of the embedding is obtained by different
learnable filter. This convolution layer transforms the complex-
valued raw radio signals to sequence of embeddings which are
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subsequently fed to the transformer encoder layers to obtain
embeddings used by the dense layers for final modulation type
classification. The transformer encoder layer uses the self-
attention mechanism which was first proposed in context of
sequence of vector embeddings arising in natural language
processing [7], [8]. Self attention mechanism allows efficient
computation of long term correlation between the sequence
embedding vectors. In past few years it has become one of
the most efficient ways of modeling sequences. It significantly
outperforms long short term memory (LSTM) based recurrent
neural networks (RNNs) as they allow successful exploitation
of correlations between distant sequence samples [8], [9].
In context of AMC, the temporal correlations have been
explored in existing literature using LSTM based RNN [5]
and convolution LSTM DNN (CLDNN) [6]. However, none
of these architectures perform better at all SNR values. The
proposed MCformer architecture builds upon the success of
self-attention mechanism in effectively modeling long term
correlations in sequences and provides significantly better per-
formance at all SNRs. To the best of our knowledge MCformer
is the first DNN that leverages self-attention mechanism for
AMC.

Through extensive numerical evaluations we demonstrate
that the proposed MCformer architecture provides state of
the art performance as compared to existing techniques at
all signal-to-noise ratios (SNRs) on the RadioML2016.10b
dataset [10]. We also perform a detailed experimental study to
understand contribution of various components of MCformer
architecture on the performance. While application of self-
attention is marred with significant computational complexity
to our surprise the MCformer achieves superior performance
with significantly fewer number of parameters. We study
two variations of MCformer architecture: MCformerLarge and
MCformerSmall. The MCformerLarge has 72,810 parame-
ters whereas MCformerSmall has just 10,050 representing
a memory efficient variation of the MCformer architecture.
MCformerLarge significantly outperforms previous state of art
ResNet architecture which has around 150, 000 parameters [6].
MCformerSmall performs similar to ResNet. This implies that
MCformerLarge is slightly more than 2 times and MCformerS-
mall is around 15 times more parameter efficient than ResNet.
Therefore, MCformer is a strong alternative that is fast and
energy-efficient as compared with existing DNN architectures



for complex-valued raw radio signals.

II. OUTLINE

The rest of this paper is organized as follows. We begin
by providing a background on the automatic modulation
classification problem in Section III which is followed by a
brief survey of existing works in Section IV. The MCformer
architecture is described in Section V. Section VI provides
details of the RadioML dataset on which performance of
MCformer is evaluated. Detailed experimental evaluation is
discussed in Section VII and Section VIII concludes this paper
with summary of our findings and future research directions.

III. AUTOMATIC MODULATION CLASSIFICATION
BACKGROUND

The automatic modulation classification is defined as the
problem of classifying modulation type of wireless signals
whose baseband complex envelope is given by

r(t) = s(t;z:) + n(t), (1)

where the analytical expression for s(t;z;) is given by
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where 0 < t < KT is the noise-free baseband complex
envelope of the received signal, n(¢) is the instantaneous
channel noise at time ¢, a; is the unknown signal amplitude,
Af is the carrier frequency offset, 6 is the time-invariant
carrier phase, ¢y is the phase jitter, {5,(;), 1<k<K; de-
notes K complex symbols, 7' represents the symbol pe-
riod, € is the normalized time offset between transmitter
and signal receiver, g(t) = DPuse(t) ® h(t) is the com-
posite effect of the residual channel with h(t) denoting
the channel impulse response and ® denoting mathemati-
cal convolution, and Ppus(t) is the transmit pulse shape.
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high dimensional vector containing all deterministic unknown
signal or channel parameters for the i modulation type. The
automatic modulation classification problem is defined as the
detection of modulation type i from the received signal r(¢).

is the

IV. RELATED WORKS

Classical approaches to AMC involve various likelihood-
based methods [11]-[16] and expert handcrafted feature design
based machine learning methods [17]-[22]. These approaches
require precise estimation of various signal parameters such
as carrier frequency and signal power with manual calibration
of threshold. Typically, these approaches classify only a small
subset of modulation types.

Multilayer Perceptron (MLP) based on handcrafted features
alleviates the problem with calibration of threshold and pro-
vides classification for a broader class of modulation types.
More recently, significant improvement in AMC was shown
using modern deep neural networks (DNNs) which alleviates

the problem of handcrafted feature design and perform classi-
fication directly from raw signals [2], [3]. Another significant
milestone was the release of RadioML datasets that allowed
for consistent bench-marking of various AMC techniques and
led to rapid improvement in DNN architectures for AMC.
Starting with basic convolution neural network (CNNs) various
architectures such as residual networks (ResNets) [3] and
densely connected convolution network (DenseNets) [4] have
been proposed in literature. Other DNNs which leverage
the temporal aspect of the radio signals are long short-term
memory (LSTM) based recurrent neural networks (RNN)
[5] and convolution LSTM DNN (CLDNN) [6]. In a recent
extensive experimental study, it was shown that CLDNN and
ResNet performed best at lower SNRs whereas at high SNRs
LSTM and ResNet perform best [6]. The LSTM based DNN
demonstrated the advantage of modeling signals as a sequence
of vectors but the superior performance is limited to high SNR
values.

In past few years self-attention mechanism has emerged as
significantly better way to model sequences especially in the
field of natural language processing [8], [9]. The proposed
MCformer architecture builds upon this and leverages self-
attention mechanism in conjunction with convolution layers
to provide significantly better performance at all SNRs. To
the best of our knowledge MCformer is the first DNN to
leverages self-attention mechanism for complex-valued raw
radio signals.

V. MCFORMER: A TRANSFORMER BASED DEEP NEURAL
NETWORK

We propose a transformer based DNN architecture MC-
former for modulation classification as shown in Figure 1.
The input to MCformer is such that I and Q components form
a one-dimensional image of depth two. The input is fed to a
convolution layer with kernel size £ x 1 with same-padding
and n2 number of output channels. We use convolution layer
because due to the lack of synchronization the captured 1/Q
samples start and end at random locations of the received
signal. We want to be able to extract features in a location
independent way and convolution layer is the best known
method for this purpose. The output of convolution layer is
fed to Scaled Exponential Linear Unit (SELU) non-linearity
[23] as it has self-normalizing properties which is important
for dealing with AMC at different SNR values. The output
of SELU is then reshaped to an n2 x 128 matrix. DNN till
this point essentially converts the two-dimensional vector at
each time sample to an n{ dimensional feature representation
obtained using different kernels of the convolution layer.

Next, this matrix is passed through N self-attention based
transformer encoder layers with hidden size n? and h heads.
Each transformer encoder layer takes a 128 x ng matrix
and outputs a matrix with the same shape by using self-
attention based processing. The high level block diagram for
the transformer encoder layer is shown in Figure 2. This
layer was first proposed in [8]. The resulting 128 x n¢ matrix
obtained after IV transformer encoder layers is down-sampled
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Fig. 1. The MCformer - model architecture.
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Fig. 2. Transformer encoder layer [8].

by the pooling layer which selects the first 4 rows of this
matrix and reshapes it into a d = 4n¢ dimensional vector.
This d-dimensional embedding vector is fed to a dense layer
followed by another dense layer with softmax non-linearity
which outputs a 10-dimensional vector whose components
provide probabilities of the modulation types.

A. Computational complexity

The total number of parameters is proportional to the
computational complexity of the MCformer. The convolution
layer has 2kn? + ng parameters. Whereas each transformer
encoder layer has n2(12n9 + 13) parameters. The dependence
on number of heads h does not show up as it gets canceled due
the way number of heads and internal dimension in multi-head
attention are choosen [8]. The first fully connected layer has
128d + 128 parameters and last layer has 1290 parameters.
The total number of parameter in MCformer has quadratic
dependence on ng.

B. Comparison with self-attention used in natural language
processing

As the proposed MCformer DNN is primarily motivated by
the success of self-attention in natural language processing
here we compare and contrast its usage in AMC. There
are some similarities between natural language processing

tasks and AMC task. For example the Stanford Sentiment
Treebank (SST) task from the GLUE [24] benchmark involves
classification of sentences to “Positive” and “Negative”. The
input sentences are a sequence of words that are fed to the
model as embeddings. This is similar to the AMC task where
we convert sequences of complex samples to embeddings and
feed them to the model to classify the type of modulation.
Also, a temporal correlation between different elements of the
sequences exists in both cases.

Unlike the NLP models where the sequences (i.e. sentences)
have a deterministic start and end, the input samples for
AMC tasks are usually taken at random times. This means
the embedding process for AMC must be able to extract the
features in a location-independent manner. Another difference
is the type of data in the sequences, for NLP tasks, there
is often a finite number of possible sequence elements (i.e.
words) in a vocabulary. But for AMC, each item in a sequence
is a complex number. This difference is very important and
it affects the way we embed the sequence elements into a
high dimensional space in which transformer models operate.
Typically, in NLP there is a need of additional positional
encoding to encode positions of embeddings in a sequence
however for the AMC task we don’t want this as there is
a natural order in samples of complex-valued radio signal.
Our initial experiments showed that we get better performance
without these positional encodings.

VI. RADIOML DATASET

The task of automatic modulation classification is typically
evaluated on the RadioML2016.10b dataset [10]. This dataset
consists of 128 dimensional complex vectors obtained by sam-
pling wireless baseband signals of ten modulation types [eight
digital and two analog modulation] at SNR values uniformly
distributed from —20 dB to +18 dB, with a step size of
2 dB,i.e, {—20 dB,—18 dB,—16 dB,--- ,+16 dB,+18 dB}
The digital modulation types consist of BPSK, QPSK, 8PSK,
QAMI16, QAMO64, BFSK, CPFSK, and PAM4; and analog
modulations consist of WBFM and AM-DSB. The dataset is
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Fig. 3. SNR vs. classification accuracy plots for various DNNs. The
MCformerLarge provides significantly better performance with only 72, 810
parameters compared to previous state of the art ResNet which has around
150, 000 parameters at all SNR values. MCformerSmall performs similar to
ResNet but with just 10,050 parameters.

labeled with SNR values and modulation types. The dataset is
generated by simulating various channel imperfections such
as thermal noise, multi-path fading, and hardware related
noises such as sample rate and frequency offset etc. Detailed
information about the dataset generation can be found in [25].
The final dataset consists of a total of 1,200, 000 samples such
that for each SNR value there are 60,000 samples with 6, 000
samples from each of ten modulation types.

VII. EXPERIMENTS

We used RadioML2016.10b dataset for measuring perfor-
mance of the proposed model. The dataset was randomly
split into 45% for training, 5% for validation and 50% for
testing following the experimental setup proposed in [6]. We
evaluate our model against CNN, DenseNet, CLDNN, LSTM,
and ResNet architecture considered in [6]. The MCformer
was trained with batch size of 128 for 100 epochs with
exponentially decaying learning rate from 0.002 to 0.0002.
For all experiments, we used TensorFlow machine learning
platform running on a Linux machine with 24 core Intel (R)
Core(TM) i9-7920X @ 2.9 GHz CPU, 128 Gigabyte RAM,
and 2 Titan-XP NVIDIA GPU cards.

Figure 3 shows the classification accuracy of trained MC-
former on test data at different SNR values. The result for
baselines are taken from [6]. We see that for all DNN archi-
tectures the classification accuracy increases with increasing
SNR. We consider two variations of the proposed MCformer
architecture: MCformerLarge and MCformerSmall. The MC-
formerLarge uses kernel size 65 x 1 with n{ = 32, N = 4
self-attention based transformer layers with h = 4 heads and
hidden size 32, followed by two dense layers of size 128 x 128
and 128 x 10. The MCformerSmall has kernel size 65 x 1,
ng = 8, N = 4 self-attention based transformer layers with
h = 4 heads and hidden size 8, followed by two dense layers
of sizes 32 x 128 and 128 x 10.

We observe that MCformerLarge outperforms the base-
lines at all SNR values. MCformerSmall provides competitive

performance with respect to existing baselines. While MC-
formerLarge outperforms MCformerSmall the performance
gain comes with increased computational complexity as MC-
formerLarge has 72,810 parameters as compared to 10,050
parameters in MCformerSmall. However, as compared to
baselines the number of parameters are significantly less in
both architectures. This implies MCformer is a better DNN
architecture for AMC task.

In order to understand the performance on individual mod-
ulation types we show confusion matrix for MCformerLarge
in the Figure 4. We observe that analog modulation types
WBFM and AM-DSB are particularly difficult to identify. The
confusion matrix suggests while the transformer is able to
identify the analog modulation from digital modulation but
it is not able to identify exact type of analog modulation
as the majority of times WBFM is classified as AM-DSB.
In existing literature these modulation types are known to
be challenging as they are obtained by sending acoustic
voice speech with some periods of silence during which the
modulation classification is difficult.

In order to better understand the impact of various param-
eters on the MCformer architecture we perform experiments
wherein we vary kernel size k£ of the convolution layer, the
hidden dimension size n¢, and number of transformer encoder
layers V. In all the experiments we use the MCformerLarge
and vary the desired parameter.

Figure 5 shows the classification accuracy at various SNR
values for the kernel sizes k = 9, 33, 65. We observe that while
the performance is slightly better at SNR values in range —10
dB to 2 dB for larger kernel size, the performance gain is not
significant.

In Figure 6 we show the performance for the hidden sizes
ng = 8,16,32. We observe performance gain is significant
for SNR values greater than —10dB as we increase the hidden
size from 8 to 16. However, relative gain when we increase the
hidden size from 16 to 32 is marginal. As discussed earlier that
the number of parameters in MCformer increase in quadractic
fashion with hidden size this result highlights the trade-off
between performance and computational complexity.

Figure 7 shows the performance with varying number of
transformer based encoder layers N. We observe that similar
to hidden size while the performance increases significantly as
we increase number of layers from 1 to 2, performance gain
is marginal as we go from 2 to 4 layers.

VIII. CONCLUSION AND FUTURE WORKS

We proposed a novel transformer based DNN - MCformer
for AMC on complex-valued radio signals. MCformer lever-
ages convolution layers and self-attention mechanism that
allows for state of the art performance with significantly less
number of parameters. We studied two MCformer based DNNs
- MCformerSmall and MCformerLarge. Through numerical
evaluation on RadioML2016.10b dataset we demonstrated
superior performance of MCformer based architectures.

While this paper provides encouraging results for MCformer
architecture there are many possible future research directions.
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8PSK AM-DSB BPSK CPFSK GFSK PAM4 QAM16 QAM64 QPSK WBFM
8PSK 43997 2891 1517 2724 2438 879 1291 823 2976 387
AM-DSB 5528 46097 624 932 1608 387 67 36 806 3848
BPSK 9498 2844 38288 1827 2095 2800 194 174 1593 370
CPFSK 9451 2790 1328 39766 3118 721 329 270 1754 421
GFSK 7968 3429 988 1797 42594 519 132 78 1102 1354
PAM4 6652 2143 2844 1598 1680 43539 200 213 1136 288
QAM16 7629 1683 1239 1930 1628 798 39192 3212 2229 304
QAMé64 5021 1109 1025 1534 1207 714 4748 42820 1868 185
QPSK 11382 2870 1634 2532 2304 891 1045 642 36449 376
WBFM 6014 30273 624 1008 2529 410 72 34 862 18233

Fig. 4. Confusion matrix for MCformerLarge. The (4, 7)*® entry denotes number of test examples of modulation type 4 that are classified as modulation type
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Fig. 6. SNR vs. classification accuracy plot for MCformerLarge architecture
with different hidden sizes.

A study on the robustness of MCformer architecture to adver-
sarial attacks is critical to real life applications. Another direc-
tion could be oriented towards improving the computational
efficiency using DNN model compression techniques or by
down-sampling the input. It remains to be seen if MCformer
type architecture could be leveraged for tasks other than AMC.
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