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Abstract


JPEG is the most popular lossy compression method 
both in the Internet and digital camera industry. Despite 
development of more efficient and robust image 
compression algorithms none of them has become popular 
enough to replace the original JPEG, mostly because of 
backward compatibility concerns. 


In this paper we show a new method that allowed us to 
improve JPEG encoding algorithm for better quality and 
compression without touching the decoding side.  Based 
on the standard JPEG pipeline, we define a Mutation 
Error Function and explain its properties. The 
exploitation of these properties are then combined with 
some deep learning techniques to develop an algorithm 
applied on the encoding side of the JPEG pipeline. This 
algorithm improves JPEG compression ratio by up to 
26% without any degradation in quality. The compressed 
files are completely compliant with JPEG standard and 
can be decoded by any standard JPEG decoder.


Keywords: JPEG, Image Compression, Mutations, 
Deep Learning, Convolutional Neural Network.


1. Introduction

With popularity of mobile devices and emergence of 

social networking websites, very large and increasing 
amounts of image data is produced every second. Almost 
all of these images are compressed and stored in JPEG 
format [1]. Since its approval as a standard in 1992, 
several new standard formats have been introduced with 
better performances both in compression and quality. For 
example, JPEG 2000 [2] introduced at the turn of the 
century uses a sophisticated encoding algorithm resulting 
in more robust compression while preserving more 
details, with higher compression ratios. In 2014, Fabrice 
Bellard introduced BPG [3] file format that produces 
smaller files for a given quality and has low memory 
requirements.


Recently Machine Learning methods in general and 
Deep Neural Networks (DNNs) [4] in particular have 

become the de facto approach to solving different real 
world problems ranging from image classification [5] and 
voice/speech recognition [6], to playing games [7] and 
autonomous driving.


Success of convolutional neural networks (CNNs) in 
several computer vision fields, has recently motivated the 
efforts for CNN-based image compression approaches. 
However, almost all of these approaches involve either 
adding additional post processing units to the standard 
decoding pipeline or completely designing new encoding/
decoding frameworks. 


The first category focuses on reducing the artifacts in 
the reconstructed image after decoding. For example, 
Dong et al. [8] designed a deep convolutional network 
(ARCNN) to reduce the artifacts in reconstructed JPEG 
images. Wang et al. [9] and Guo and Chao [10] used dual-
domain deep networks designed specifically based on 
JPEG compression knowledge again for artifact reduction 
after decoding the images. All de-blocking and super-
resolution approaches fall in this category [11, 12, 13, 14].


On the other hand, Li et al. [15] designed a network 
architecture that creates and uses an importance map to 
perform a content-weighted compression. Ballé et al. [16] 
optimize a weighted sum of rate and distortion using a 
generalized divisive normalization (GDN) for non-
linearity. Theis et al. [17] propose an image compression 
framework by designing an auto-encoder based on the 
super-resolution ideas from Shi et al [14]. Jiang et al. [18] 
improve the quality of the reconstructed image by adding 
preprocessing neural networks to the encoding process 
and the corresponding post processing layers after the 
decoding stage. Another example in this category is the 
work of Toderici et al. [19].


2. Related Work

As mentioned earlier despite development of more 

efficient image compression algorithms, JPEG is still the 
most popular lossy image compression standard. 
According to w3techs.com  about %73 of websites use 1

JPEG images. The backward compatibility issue makes it 

 W3Techs: Usage of JPEG for websites: https://w3techs.com/technologies/details/im-jpeg/all/all (August 2018)1
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very difficult for new algorithms to replace JPEG. For 
example, 16 years after its introduction and despite its 
universal improvements, JPEG 2000 has failed to replace 
JPEG. The most important problem preventing new 
compression methods from becoming popular is a chicken 
or the egg dilemma: Camera manufacturers and web sites 
aren’t ready to accept new formats until they become 
widely adopted; consumers, however, aren't interested in 
new formats until they are widely available. 


That’s why our approach and the related work 
mentioned in this section focus on improving the JPEG 
encoding process without any changes to the decoding 
side. The work in this area started in 1993 [22] and most 
of the effort had been focused on improving the 
quantization tables. These efforts have been revived 
recently, as newer and more accurate psychovisual image 
quality assessment methods such as SSIM [23], MS-SSIM 
[24], FSIM [25], and Butteraugli [26] emerged. For 
example, Hopkins et al. [27] designed a method based on 
Simulated Annealing to find quantization tables that 
perform better than JPEG’s standard quantization tables at 
different quality factors. Google Research recently started 
a new JPEG compression project called “Guetzli” [26]. 
They use 3 different “optimization opportunities” to 
improve JPEG: 1) Improving quantization tables, 2) 
Increasing the number of zeros to improve run-length 
encoding, and 3) Occasional downsampling of color 
components. Other approaches have tried to optimize 
JPEG compression for special purposes such as web 
deployment  or images fed to DNNs [29].
2

Unlike the works explained above we use fixed 
quantization tables (JPEG standard) and improve the 
JPEG compression only by modifying the DCT 
coefficient values. While “Guetzli” [26] replaces some of 
the DCT coefficients with zeros to improve run-length 
and entropy encoding, we provide a systematic method 
for “mutating” the DCT coefficients to optimize the 
weighted sum of number of bits for each coded block 
(rate) and the distance between the reconstructed and 
original block (distortion). As a result we designed and 
implemented a JPEG standard-compliant and backward-
compatible encoding algorithm (Called “Mutated JPEG”) 
that improves the compression by up to 26 percent  3

without degrading the image quality. As a future 
exploration work, we believe combining the ideas from 
this paper with the ones used in [26] and [27] could 
improve the compression performance even more.


 
3. JPEG Compression


The standard JPEG encoding pipeline (Fig. 1) consists 
of converting image colorspace to one luma (Y) and two 
chroma (Cr/Cb) channels, breaking up each channel to 
blocks, transforming each block to frequency domain 
(DCT), quantizing the results by element-wise devision to 
the quantization tables and rounding, followed by lossless 
entropy coding. The decoding pipeline does the 
corresponding inverse processes to reconstruct the 
original image. At the end of decoding process, the values 
at the output of the inverse DCT transformation may be 
less than 0 or more than 255. These values are clipped to 
make sure the results are between 0 and 255.


We performed all experiments using only baseline 
sequential color JPEG images without sub-sampling the 
color components; however the same methods can be 
applied to other cases with progressive and sub-sampling 
features. Based on this JPEG pipeline, we define the 
following functions that are used in the rest of this paper:


Original Input Block is a matrix Bo in ℤ8x8 
representing a block in one of the Y/Cr/Cb components. 
The elements of Bo are integers between 0 and 255 
inclusive. 


Encoding Transform Function represents the 
encoding process:


TEnc(B): ℤ8x8 → ℝ8x8  	 (1) 
TEnc(B) = DCT(B-128)÷Q


where DCT is 2D Discrete Cosine Transform, Q is the 
quantization table, and subtraction and division operations 
are element-wise. We also define the Encoded Original 
Block as Xo = TEnc(Bo).


Decoding Transform Function represents the 
decoding process:


TDec(X): ℝ8x8 → ℤ8x8  	 (2) 
TDec(X) = RnClp(IDCT(X*Q)+128)


 The mozjpeg project, Mozilla Research, https://research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project/ (2014)2

 Please refer to our best results included in the Supplementary Materials.3

Compressed 
Image Data

Sub-
Sampling

DCT 
Transformation Quantization

Entropy 
Encoding

Color 
Transformation 

to YCrCb

RGB Raw 
Image

Entropy 
Decoding

De-
Quantization

Inverse DCT 
TransformationUp-Sampling

Color 
Transformation 

to RGB

RGB Raw 
Image

Compression

Decompression
Fig. 1: The standard JPEG compression/decompression pipeline.

https://research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project/


where IDCT is inverse DCT transform, multiplication 
and addition are element-wise, and the “RnClp” function 
clips all matrix elements between 0 and 255 and then 
rounds them to the nearest integer.


Block Reconstruction Error represents the 
reconstruction error when matrix X is used to reconstruct 
the original block:


E(X): ℝ8x8 → ℝ	 (3) 
E(X) = MSQ(TDec(X)-Bo)


where MSQ(A) is the mean square of all elements in 
the matrix A. 


The block reconstruction error for any block B in 
standard JPEG algorithm is given by E( round(TEnc(B)) ). 
Based on the above definitions, it is obvious that:


TDec( TEnc(B) ) = B	 (4) 
E(Xo) = E( TEnc(Bo) ) = 0	 (5)


Since the Zigzag reordering in JPEG pipeline does not 
effect the values of these functions, we ignore it in our 
mathematical equations.


4. Rounding Problem

To get the best quality, we want to minimize the Block 

Reconstruction Error for every block of the image. As 
mentioned above, the block reconstruction error would be 
zero if we could use the real values of the encoded block 
(i.e. if X∈ℝ8x8). Unfortunately, entropy coding requires 
integer values as input. The standard JPEG uses the 
“Round” function to move X to integer domain. However, 
for the best results, we need to solve the following Integer 
Non-Linear Programing problem: 


Minimize: E(Z) subject to Z ∈ ℤ8x8  	 (6) 


Adding integrality constrains to the linear programing 
in most cases results in increased complexity. Integer 
Linear Programing has been studied for a long time and 
solutions such as Branch and Bound can be used to solve 
them in polynomial time by using the relaxation of the 
Integer Programing (IP) to Linear Programing (LP). 
Integer Non-Linear Programing is more complex. Hübner 
et al. [30] define a “Rounding Property” for a function 
and prove that if a function has rounding property, you 
can find the solution to the relaxed non-linear problem in 
ℝn and then round the results to get the solution in ℤn .


The Block Reconstruction Error function E(X) does 
not have the “Rounding Property” (As this is shown later 
simply by counterexamples). This means rounding the 
optimal solution X* in ℝ8x8 does not always result in the 
optimal solution Z* in ℤ8x8.


The diagram in Fig. 2 shows a 1-D example where 
rounding the real optimal solution in ℝ does not results in 
the integer optimal solution in ℤ.


5. Mutation Error Function

Our method of finding the optimal integer solution for 

(6) is by adding small “mutations” - real 8x8 matrixes - to 
the encoded original block Xo before rounding. Now the 
question is which mutation results in minimum error? 
Here is one idea from Fig. 2: What if we could get a 
mutation that moves us near a local minimum of the error 
function? After all there is a much higher chance of the 
optimal integer solution happening somewhere near a 
local minimum than any other random point.


We define the Mutation Error Function as:


EMut(M): ℝ8x8 → ℝ	 (7) 
EMut(M) = E(Xo + M)


where M is an 8x8 mutation matrix that is applied to 
the Encoded Original Block Xo. 


Using (5), we can see that EMut(M) has a global 
minimum at M=0 because EMut(0)=E(Xo)=0. After 
studying this function, we noticed that first, EMut(M) has 
many local minima; and second, the locations of these 
local minima are almost independent of the original 
block.


As M moves away from the global minimum, EMut(M) 
increases. However, since EMut(M) is a mixture of non-
linear functions such as clipping and rounding, the 
increase is not always monotonic which means EMut(M) 
has many local minima. As you can see in Fig. 3, as we 
move slightly away from the global minimum, the shape 
of function changes drastically which results in many 
local minima. In the integer domain, these local minima 
provide opportunities similar to Fig. 2 where an optimal 
solution in the integer domain can happen away from the 
global minimum in the real domain.


Fig. 2: The optimal solution in real domain is 2.3 which results 
in the global minimum (≈1.5). Rounding it gives the integer 
value 2, which results in: f(2)≈3. In this example the optimal 
solution in the integer domain is -1 because: f(-1)≈2.4 which is 
less than f(2)≈3.



One interesting property of the mutation error function 
is that the shape of function and location of its local 
minima only depends on the quantization matrix and is 
almost independent of the actual block values. To show 
this independence, we can rewrite the function using the 
definitions in section 1:


EMut(M) = E(Xo + M) = MSQ(TDec(Xo + M) - Bo) 
	 = MSQ(RnClp(IDCT((Xo + M)*Q) + 128) - Bo) 
	 = MSQ(RnClp(IDCT(Xo*Q) + IDCT(M*Q) + 128) - Bo) 
	 = MSQ(RnClp(Bo + IDCT(M*Q)) - Bo)	 (8)


Now suppose b is an integer between 0 and 255. For 
any small 𝛿, we can use the following approximation for 
rounding and clipping:


RnClp(b+𝛿) ≈ b + Round(𝛿)	 (9)


The equation above is exact for most cases. The 
approximation happens only when |𝛿|>0.5 and b is near 
the range boundaries 0 and 255.


Back to equation (8), since Bo contains only integers 
between 0 and 255 (By definition), and IDCT(M*Q) is 
small (this can easily be derived from M<<Xo), we can 
plug this approximation into (8):


EMut(M) = MSQ( RnClp(Bo + IDCT(M*Q)) - Bo ) 
	  ≈ MSQ( Bo + Round(IDCT(M*Q)) - Bo )	 (10)


Therefore:


EMut(M) ≈ MSQ(Round(IDCT(M*Q)))	 (11)


This means EMut(M) is almost independent of the block 
values. In other words the locations of local minima of 
EMut(M) depend only on the quantization matrix. Fig. 3 
shows a verification of equation (11).


Now suppose we somehow acquired a list of locations 
of local minima of EMut(M) for a specific quantization 
matrix. Because of the rounding phenomena highlighted 
in Fig. 2, there is a good chance that moving to one of 
these local minima before rounding, could result in: a) 
less number of bits in the coded block, or b) lower block 
reconstruction error (or both).


6. Brute Force Algorithm

As in any other compression method, there is always a 

tradeoff between rate and distortion. So we define a 
reconstruction cost function C(X) for each encoded block 
X:


C(X) = N(X) + 𝜆.E(X)	 (12)


Where N(X) is the number of bits in the entropy-coded 
block, and E(X) is the Block Reconstruction Error defined 
in (3). The parameter 𝜆 is used to optimize the encoding 
for compression or quality. Generally, higher values of 𝜆 

result in improved quality while lower values cause better 
compression. 


The algorithm 1 uses a list ℳ of local minima of 
EMut(M) for a specific quality factor to compress an 
image. In line 4, we try every mutation M from the list ℳ 
and choose the one that results in the lowest cost as 
defined in (12).


7. GPU Based Algorithm

Unfortunately the brute force algorithm is very slow. 

That is because of extensive computational load for 
calculating the block error and number of bits in the 
entropy-coded blocks. For example, it takes about 2 hours 
on a MacBook Pro to compress the “Fruits” image in Fig. 
6. This makes the brute force algorithm impractical for 
most applications.


For each block, the number of bits in the entropy-
coded block needs to be calculated ‘m’ times (m: number 
of mutations). The only way to know the number of bits is 

Fig. 3: The mutation error function EMut(M) near the global 
minimum (at M=0) as a function of 10th element (m1,1 in the 
8x8 matrix) when the other elements are fixed at 0.1. The 
diagrams show the minimum, average, and maximum of the 
block errors for about 2700 different blocks of an image. These 
diagrams are based on the standard JPEG quantization matrix 
for luma (Y) with a quality factor of 90. The fact that average is 
very close to max proves that there is very little variation in 
EMut(M) for different blocks (Bo) as shown in (11)

Algorithm 1: Brute Force JPEG compression using mutations


1 	 ℳ: A list of local minima of EMut(M) for the given quality factor.


2	 foreach component in [Y, Cr, Cb] do

3	 	 foreach block Bo in component do

4	 	 	 M* = argmin C( Round(TEnc(Bo)+M) ) 	 ∀ M ∈ ℳ 

	 	 	                         M

5	 	 	 X = Round( TEnc(Bo) + M*)

6	 	 	 Pass X to entropy coding stage



to actually do the entropy coding and then count the 
number of bits in the coded block.


We can improve the speed significantly by running the 
algorithm on powerful GPUs. This allows us to parallelize 
the process and work on multiple blocks at the same time. 
Unfortunately porting the entropy coding (calculating 
number of bits) to GPU platforms such as TensorFlow is 
not straightforward. 


To solve this problem we trained deep convolutional 
neural networks to predict the number of bits needed for 
entropy coding of a block. Our goal here is to solve a 
regression problem: The input is a 64-D vector 
representation of a mutated 8x8 block and the output is 
the number of bits in the entropy-coded block. After 
trying several network configurations it was seen that 
networks with 1-D convolutional layers provide the best 
accuracy for the regression problem. The success of 1-D 
convolutional network can be attributed to the fact that in 
entropy coding there is a correlation between neighboring 
elements of input vector because of run-length encoding. 


Since in JPEG standard, different Huffman tables are 
used for luma and chroma, we need to train 2 different 
networks. In practice we used the same network structure 
(Fig. 4) for both luma and chroma but trained them 
separately with different sets of sample blocks. As an 
example, for quality factor 80, we used 1,107,187 training 
and 123,021 test samples created from 218 images and the 
mean absolute error (MAE) over test samples after 
rounding the output was 0.369 for luma (Y) network and 
0.028 for chroma (CrCb).





After training the networks with many samples, we can 
now plug them in our GPU based pipeline for the 
encoding process. Fig. 5 summarizes the final GPU based 
pipeline that can be used to compress images much faster 
than the brute force algorithm. As you can see instead of 
working serially on every block, we process one block-
column of the image at a time. For example, for an 
800x800 image, a column of 800x8 (100 8x8 blocks) is 
processed as one batch with a total of 100 batches to 
complete the process for each luma/chroma component of 
the image.  


 
8. Mining Mutations


As explained above the mutation error function 
EMut(M) has many local minima which is seen in Fig. 3 
for one dimension. In 64-D space, shape of this function 
becomes extremely complex which results in many more 
local minima. Our optimization method in this paper 
depends on having a list of these local minima. 
Unfortunately, there is no straightforward method of 
finding all these local minima; mostly because EMut(M) is 
a non-differentiable piecewise function. Our approach is 
inspired by the “Particle Swarm Optimization” [31], with 
2 major differences: first, we are looking for local minima 
instead of the global minimum therefore we don’t share 
information between particles, and second, each particle’s 
movement in our space is defined by coordinate descent. 
Both particle swarm and coordinate descent algorithms 
are known to work well with non-differentiable functions. 
Once the mutations are found, they can be reused again 
and again to compress different images.


This section explains the process of “mining” local 
minima that are applied as mutations to the DCT 
coefficients before rounding and entropy coding. This 
process is made up of the following four stages:


8.1. Initial Vectors

The potential mutations are initialized with a uniformly 

distributed random 64-D vector from a region near the 
global minimum of EMut(M) at M=0. We tried different 
types of bounds for the region and used the one that 
resulted in most number of mutations in least amount of 
time. For each block Bo, this region contains all points M0 
with L1-norm less than or equal to L1-norm of encoded 
original block:


||M0||1 ≤ ||Xo||1	 (13)


where:  Xo = TEnc(Bo). The L1-norm here encourages 
sparsity and smaller values for the mutated encoded 
blocks (Xo + M), both of which result in better entropy 
coding compression. For each block of every image, we 
create several initial vectors (swarm of particles)


8.2. Coordinate Descent

For each initial vector M0, we start a coordinate decent 

on the mutation error function EMut(M) to reach to a local 
minimum. In practice we do one coarse coordinate 
descent (High particle speed) followed by another one 
with finer resolution (decelerating particles to stop at local 
minimum).


The result of coordinate descent for each particle is 
kept as a candidate mutation only if:


1. It is not too close to an existing local minimum 
already found.
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Fig. 4: The Neural Network configuration used to estimate the 
number of bits in the entropy-coded blocks. Total Network 
Parameters: 2,240,065.



2. It is not too close to the global minimum at M=0.

3. The rounded mutated block error is less than a 
predefined margin:


E( Round(Xo + M) ) < Emax	 (14)


Where Emax is based on average block reconstruction 
errors for standard JPEG encoding with a specific quality 
factor.   


8.3. Repeating and merging

In practice we ran this program in parallel processes on 

many images to get several lists of candidate mutations. 
These lists are then merged to get a large list of candidate 
mutations. During the merging process we drop a 

mutation if it is too close to an existing one from a 
different list.


8.4. Filtering out rarely used mutations

We use the merged list of mutations to compress many 

image files counting the number of times each mutation in 
the list reduces the reconstruction error. The mutations 
with highest success rates are then kept as our final list of 
mutation.


The mining process is a very time-consuming task. As 
an example it takes about 5 days to mine mutations from 
130 images (with image sizes around 512x340) on a 
server with 36 cores running 3.0 GHz Intel Xeon 
processors (AWS c5.9xlarge instances)


Fig. 5: GPU based compression pipeline. This pipeline works on a single “block-column” at a time. First, the encoding 
transformations are applied to the blocks in the column. All the mutations are added to all encoded blocks to form the 3D tensor 
(Xo+M). It is then used to calculate the Mutation Error Function EMut(M). To make this process faster when the number of mutations 
is large, we use only the top K mutations with lowest errors. The selected mutated blocks are then fed to the CNN to estimate the 
number of bits N(X). The cost for each mutated block is then calculated and the blocks with lowest costs are selected to be passed to 
the entropy coding stage. The rest of encoding process is exactly similar to the JPEG standard.
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Also note that since there are 2 different quantization 
matrixes for luma and chroma components of the image, 
we need to mine 2 sets of mutations.


At the end of the mining process we get 2 sets of 
mutations for luma and chroma components. Each set can 
be represented by an mx64 matrix where m is the number 
of mutations found.


This process must be repeated once for every specific 
quantization matrix. Since the JPEG quality factor 
modifies the quantization matrix, we mine new sets of 
mutations for different quality factors. Once we have 
these lists of mutations, we can compress any image using 
the same list of mutations.


9. Experimental Results

For different stages of mining, training, and parameter 

searches, we used a raw image data set consisting of 218 
uncompressed images downloaded from different 
websites. The images cover a wide range of different 
categories and imaging conditions. 


We also used 10 raw images from the publicly 
available IVC dataset [32] for evaluation purposes. These 
images were not used in any stage of mining or training. 
Fig. 6 shows a side-by-side comparison of the 
compression and quality results as Standard JPEG and our 
algorithm (Mutated JPEG) were used to compress one of 
these test images at quality factor 80.


To evaluate the quality performance we used SSIM 
[23] which gives a measure of similarity between the 
reconstructed JPEG image and the original raw image. 
For comparison, we also included other error measures 
such as MSE and PSNR. For rate performance evaluation 
we use the JPEG file size and bit per pixel (BPP). Fig. 7 
shows the rate-distortion comparison between our 
algorithm and standard JPEG.


We used Tensorflow framework for the implementation 
of the convolutional neural networks and entire encoding 
pipeline.


Using the mining method explained in previous 
section, we created different sets of mutations for 
different JPEG quality factors. We used about 130 images 
during the mining process and then merged and filtered 
them using 218 images.


We used all 218 images to create training and test 
datasets and used them to train 2 CNN models for each 
quality factor.


We then implemented a parameter search algorithm 
and used it with 218 images to find the best values of 𝜆 
(optimized for compression ratio) in equation (12) for 
different JPEG quality factors. 


Table 1 compares the average results of compression 
for the 10 test images at different quality factors. The 𝜆 

Fig. 7: The rate-distortion charts with PSNR (left), MSE (middle), and SSIM (right) vs. bits per pixel (BPP). These values are 
calculated at 9 different quality factors (10 .. 90). As you can see the improvement in compression increases as the quality factor 
increases.

Fig. 6: Side by side comparison of a compressed sample image 
(from our test image set). The image was compressed with a 
quality factor of 80. Our method shows an improvement of more 
than %15 in compression ratio without degrading quality.



values for the mutated JPEG algorithm at each quality 
factor were adjusted to get almost the same SSIM value as 
the Standard JPEG. This means the algorithm was 
optimized for compression. As you can see in all cases the 
SSIM values are slightly better than standard JPEG while 
the BPP values are reduced significantly compared to 
Standard JPEG.


Fig. 8 shows the compression improvement at different 
quality factors.


We also tried the Mutated JPEG algorithm on a variety 
of raw images downloaded from the internet. Our best 
results (with up to %26 improvement in compression) are 
included in the Supplementary Materials accompanying 
this paper.


 
10. Conclusion


We have shown that applying small mutations to the 
DCT coefficient values in JPEG encoding pipeline can 
result in better compression ratios and better quality. We 
also have provided a systematic method to efficiently find 
the best mutations and incorporate them in a new GPU 
based JPEG encoding pipeline. We have also shown how 
we can use convolutional neural networks to estimate the 
number of bits in an entropy-coded block and improve the 
performance of the encoding pipeline.


In future work we would like to investigate the 
performance improvements by combining the methods of 
this paper with those of [27] and [28]. We are also 
interested in applying the concept of mutations to modern 
video encoding standards such as AVC and HEVC. 

Fig. 8: Average Compression improvement on 10 test images at 
different quality factors. The 𝜆 values for luma and chroma 
components were adjusted for best compression ratio while 
keeping the quality (average SSIM values) slightly better than 
the standard JPEG.

Quality 
Factor

Standard JPEG Mutated JPEG
BPP SSIM BPP SSIM

10 0.44446 0.69070 0.43181 0.69161
20 0.66463 0.77481 0.63345 0.77496
30 0.86674 0.81379 0.81258 0.81404
40 1.04196 0.83615 0.97574 0.83627
50 1.19712 0.85212 1.11477 0.85220
60 1.41758 0.86716 1.29916 0.86725
70 1.72878 0.88412 1.57602 0.88421
80 2.29902 0.90508 2.04648 0.90515
90 3.74981 0.93602 3.32551 0.93605

Table 1: The average compression (BPP) and quality (SSIM) 
values over 10 test images for standard JPEG and Mutated JPEG 
at different quality factors.
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