Improving JPEG Compression Using Mutations and Deep Learning

Shahab Hamidi-Rad
shahab.hamidi-rad@technicolor.com

Technicolor Al Research Lab, 3000 El Camino Real, Unit 4, Suite 200, Palo Alto, CA 94306

Abstract

JPEG is the most popular lossy compression method
both in the Internet and digital camera industry. Despite
development of more efficient and robust image
compression algorithms none of them has become popular
enough to replace the original JPEG, mostly because of
backward compatibility concerns.

In this paper we show a new method that allowed us to
improve JPEG encoding algorithm for better quality and
compression without touching the decoding side. Based
on the standard JPEG pipeline, we define a Mutation
Error Function and explain its properties. The
exploitation of these properties are then combined with
some deep learning techniques to develop an algorithm
applied on the encoding side of the JPEG pipeline. This
algorithm improves JPEG compression ratio by up to
26% without any degradation in quality. The compressed
files are completely compliant with JPEG standard and
can be decoded by any standard JPEG decoder.

Keywords: JPEG, Image Compression, Mutations,
Deep Learning, Convolutional Neural Network.

1. Introduction

With popularity of mobile devices and emergence of
social networking websites, very large and increasing
amounts of image data is produced every second. Almost
all of these images are compressed and stored in JPEG
format [1]. Since its approval as a standard in 1992,
several new standard formats have been introduced with
better performances both in compression and quality. For
example, JPEG 2000 [2] introduced at the turn of the
century uses a sophisticated encoding algorithm resulting
in more robust compression while preserving more
details, with higher compression ratios. In 2014, Fabrice
Bellard introduced BPG [3] file format that produces
smaller files for a given quality and has low memory
requirements.

Recently Machine Learning methods in general and
Deep Neural Networks (DNNs) [4] in particular have

' W3Techs: Usage of JPEG for websites: htt] technologi

tails/im-j

become the de facto approach to solving different real
world problems ranging from image classification [5] and
voice/speech recognition [6], to playing games [7] and
autonomous driving.

Success of convolutional neural networks (CNNs) in
several computer vision fields, has recently motivated the
efforts for CNN-based image compression approaches.
However, almost all of these approaches involve either
adding additional post processing units to the standard
decoding pipeline or completely designing new encoding/
decoding frameworks.

The first category focuses on reducing the artifacts in
the reconstructed image after decoding. For example,
Dong et al. [8] designed a deep convolutional network
(ARCNN) to reduce the artifacts in reconstructed JPEG
images. Wang et al. [9] and Guo and Chao [10] used dual-
domain deep networks designed specifically based on
JPEG compression knowledge again for artifact reduction
after decoding the images. All de-blocking and super-
resolution approaches fall in this category [11, 12, 13, 14].

On the other hand, Li et al. [15] designed a network
architecture that creates and uses an importance map to
perform a content-weighted compression. Ballé et al. [16]
optimize a weighted sum of rate and distortion using a
generalized divisive normalization (GDN) for non-
linearity. Theis et al. [17] propose an image compression
framework by designing an auto-encoder based on the
super-resolution ideas from Shi et al [14]. Jiang et al. [18]
improve the quality of the reconstructed image by adding
preprocessing neural networks to the encoding process
and the corresponding post processing layers after the
decoding stage. Another example in this category is the
work of Toderici et al. [19].

2. Related Work

As mentioned earlier despite development of more
efficient image compression algorithms, JPEG is still the
most popular lossy image compression standard.
According to w3techs.com! about %73 of websites use
JPEG images. The backward compatibility issue makes it

all/all (August 2018)

https://w3techs.com/technologies/details/im-jpeg/all/all

very difficult for new algorithms to replace JPEG. For
example, 16 years after its introduction and despite its
universal improvements, JPEG 2000 has failed to replace
JPEG. The most important problem preventing new
compression methods from becoming popular is a chicken
or the egg dilemma: Camera manufacturers and web sites
aren’t ready to accept new formats until they become
widely adopted; consumers, however, aren't interested in
new formats until they are widely available.

That’s why our approach and the related work
mentioned in this section focus on improving the JPEG
encoding process without any changes to the decoding
side. The work in this area started in 1993 [22] and most
of the effort had been focused on improving the
quantization tables. These efforts have been revived
recently, as newer and more accurate psychovisual image
quality assessment methods such as SSIM [23], MS-SSIM
[24], FSIM [25], and Butteraugli [26] emerged. For
example, Hopkins et al. [27] designed a method based on
Simulated Annealing to find quantization tables that
perform better than JPEG’s standard quantization tables at
different quality factors. Google Research recently started
a new JPEG compression project called “Guetzli” [26].
They use 3 different “optimization opportunities” to
improve JPEG: 1) Improving quantization tables, 2)
Increasing the number of zeros to improve run-length
encoding, and 3) Occasional downsampling of color
components. Other approaches have tried to optimize
JPEG compression for special purposes such as web
deployment? or images fed to DNNs [29].

Unlike the works explained above we use fixed
quantization tables (JPEG standard) and improve the
JPEG compression only by modifying the DCT
coefficient values. While “Guetzli” [26] replaces some of
the DCT coefficients with zeros to improve run-length
and entropy encoding, we provide a systematic method
for “mutating” the DCT coefficients to optimize the
weighted sum of number of bits for each coded block
(rate) and the distance between the reconstructed and
original block (distortion). As a result we designed and
implemented a JPEG standard-compliant and backward-
compatible encoding algorithm (Called “Mutated JPEG”)
that improves the compression by up to 26 percent3
without degrading the image quality. As a future
exploration work, we believe combining the ideas from
this paper with the ones used in [26] and [27] could
improve the compression performance even more.

3. JPEG Compression

The standard JPEG encoding pipeline (Fig. 1) consists
of converting image colorspace to one luma (Y) and two
chroma (Cr/Cb) channels, breaking up each channel to
blocks, transforming each block to frequency domain
(DCT), quantizing the results by element-wise devision to
the quantization tables and rounding, followed by lossless
entropy coding. The decoding pipeline does the
corresponding inverse processes to reconstruct the
original image. At the end of decoding process, the values
at the output of the inverse DCT transformation may be
less than 0 or more than 255. These values are clipped to
make sure the results are between 0 and 255.

Compression

RGB Raw Color Sub-. DCT Entro
N - P Py
Image Tratnos ?gr'g;m" > Sampling > Transformation | Quantization | Encoding
Compressed
Image Data
RGB Raw Color
. N Inverse DCT De- Entropy
tmage G Tra"::‘::gm" € Up-sampling [1 formation € Quantization[€] Decoding

) Decompression

Fig. 1: The standard JPEG compression/decompression pipeline.

We performed all experiments using only baseline
sequential color JPEG images without sub-sampling the
color components; however the same methods can be
applied to other cases with progressive and sub-sampling
features. Based on this JPEG pipeline, we define the
following functions that are used in the rest of this paper:

Original Input Block is a matrix B, in Z%®
representing a block in one of the Y/Cr/Cb components.
The elements of B, are integers between 0 and 255
inclusive.

Encoding Transform Function represents the
encoding process:

TEnc(B)Z ZSXS _ IRSXS (1)
Tene(B) = DCT(B-128)+Q

where DCT is 2D Discrete Cosine Transform, Q is the
quantization table, and subtraction and division operations
are element-wise. We also define the Encoded Original
Block as Xo = Tenc(Bo).

Decoding Transform Function represents the
decoding process:

TDec(X)Z R8x8 _ ZSXS (2)
Toee(X) = RnClp(IDCT(X*Q)+128)

2 The mozjpeg project, Mozilla Research, https://research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project/ (2014)

3 Please refer to our best results included in the Supplementary Materials.

https://research.mozilla.org/2014/03/05/introducing-the-mozjpeg-project/

where IDCT is inverse DCT transform, multiplication
and addition are element-wise, and the “RnClp” function
clips all matrix elements between 0 and 255 and then
rounds them to the nearest integer.

Block Reconstruction Error represents the
reconstruction error when matrix X is used to reconstruct
the original block:

EX):R*™ SR 3)

E(X) = MSQ(TDec(X)-Bo)

where MSQ(A) is the mean square of all elements in
the matrix A.

The block reconstruction error for any block B in
standard JPEG algorithm is given by E(round(TEwc(B))).
Based on the above definitions, it is obvious that:

TDec(TEuc(B)) =B (4)
E(XO) = E(TEnc(Bo)) =0 (5)

Since the Zigzag reordering in JPEG pipeline does not
effect the values of these functions, we ignore it in our
mathematical equations.

4. Rounding Problem

To get the best quality, we want to minimize the Block
Reconstruction Error for every block of the image. As
mentioned above, the block reconstruction error would be
zero if we could use the real values of the encoded block
(i.e. if XEIRsXS). Unfortunately, entropy coding requires
integer values as input. The standard JPEG uses the
“Round” function to move X to integer domain. However,
for the best results, we need to solve the following Integer
Non-Linear Programing problem:

8x8

Minimize: E(Z) subjectto Z € Z 6)

Adding integrality constrains to the linear programing
in most cases results in increased complexity. Integer
Linear Programing has been studied for a long time and
solutions such as Branch and Bound can be used to solve
them in polynomial time by using the relaxation of the
Integer Programing (IP) to Linear Programing (LP).
Integer Non-Linear Programing is more complex. Hiibner
et al. [30] define a “Rounding Property” for a function
and prove that if a function has rounding property, you
can find the solution to the relaxed non-linear problem in
R" and then round the results to get the solution in Z".

The Block Reconstruction Error function E(X) does
not have the “Rounding Property” (As this is shown later
simply by counterexamples). This means rounding the
optimal solution X* in R™® does not always result in the
optimal solution Z* in Z***.

The diagram in Fig. 2 shows a 1-D example where
rounding the real optimal solution in R does not results in
the integer optimal solution in Z.

f(x)

Optimal
solution in Z

4 3 2 \q

|
|
Optimal :
solution in &

|

] 1 2 3 X

Fig. 2: The optimal solution in real domain is 2.3 which results
in the global minimum (=1.5). Rounding it gives the integer
value 2, which results in: f(2)=3. In this example the optimal
solution in the integer domain is -1 because: f(-1)=2.4 which is
less than f(2)~3.

5. Mutation Error Function

Our method of finding the optimal integer solution for
(6) is by adding small “mutations” - real 8x8 matrixes - to
the encoded original block X, before rounding. Now the
question is which mutation results in minimum error?
Here is one idea from Fig. 2: What if we could get a
mutation that moves us near a local minimum of the error
function? After all there is a much higher chance of the
optimal integer solution happening somewhere near a
local minimum than any other random point.

We define the Mutation Error Function as:

8x8

EMut(M)I R —R (7)
Emu(M) = E(Xo+ M)

where M is an 8x8 mutation matrix that is applied to
the Encoded Original Block Xo.

Using (5), we can see that Emu(M) has a global
minimum at M=0 because Emu(0)=E(Xo)=0. After
studying this function, we noticed that first, Emu(M) has
many local minima; and second, the locations of these
local minima are almost independent of the original
block.

As M moves away from the global minimum, Emu(M)
increases. However, since Emu(M) is a mixture of non-
linear functions such as clipping and rounding, the
increase is not always monotonic which means Emu(M)
has many local minima. As you can see in Fig. 3, as we
move slightly away from the global minimum, the shape
of function changes drastically which results in many
local minima. In the integer domain, these local minima
provide opportunities similar to Fig. 2 where an optimal
solution in the integer domain can happen away from the
global minimum in the real domain.

One interesting property of the mutation error function
is that the shape of function and location of its local
minima only depends on the quantization matrix and is
almost independent of the actual block values. To show
this independence, we can rewrite the function using the
definitions in section 1:

Emu(M) = E(Xo + M) = MSQ(Tpee(Xo + M) - Bo)
= MSQ(RnClp(IDCT((Xo+ M)*Q) + 128) - By)
= MSQ(RnClp(IDCT(X,*Q) + IDCT(M*Q) + 128) - Bo)
= MSQ(RnClp(B, + IDCT(M*Q)) - Bo) (8)

Now suppose b is an integer between 0 and 255. For
any small 6, we can use the following approximation for
rounding and clipping:

RnClp(b+6) = b + Round(6) 9

The equation above is exact for most cases. The
approximation happens only when |6>0.5 and b is near
the range boundaries 0 and 255.

Back to equation (8), since B, contains only integers
between 0 and 255 (By definition), and IDCT(M*Q) is
small (this can easily be derived from M<<X,), we can
plug this approximation into (8):

Emu(M) = MSQ(RnClp(B, + IDCT(M*Q)) - B,)
~ MSQ(B, + Round(IDCT(M*Q)) - B,) (10)

Therefore:
Emut(M) = MSQ(Round(IDCT(M*Q))) (11)

This means Emu(M) is almost independent of the block
values. In other words the locations of local minima of
Emu(M) depend only on the quantization matrix. Fig. 3
shows a verification of equation (11).

Now suppose we somehow acquired a list of locations
of local minima of Emuw(M) for a specific quantization
matrix. Because of the rounding phenomena highlighted
in Fig. 2, there is a good chance that moving to one of
these local minima before rounding, could result in: a)
less number of bits in the coded block, or b) lower block
reconstruction error (or both).

6. Brute Force Algorithm

As in any other compression method, there is always a
tradeoff between rate and distortion. So we define a
reconstruction cost function C(X) for each encoded block
X:

C(X) = N(X) + L.E(X) (12)
Where N(X) is the number of bits in the entropy-coded
block, and E(X) is the Block Reconstruction Error defined

in (3). The parameter 4 is used to optimize the encoding
for compression or quality. Generally, higher values of A

—— Max

1251 A9
— Min

12.0

11.5 4

E Mul(M)

10.5 4

10.0

9.5

Fig. 3: The mutation error function Emuw(M) near the global
minimum (at M=0) as a function of 10th element (mi, in the
8x8 matrix) when the other elements are fixed at 0.1. The
diagrams show the minimum, average, and maximum of the
block errors for about 2700 different blocks of an image. These
diagrams are based on the standard JPEG quantization matrix
for luma (Y) with a quality factor of 90. The fact that average is
very close to max proves that there is very little variation in
Emu(M) for different blocks (Bo) as shown in (11)

result in improved quality while lower values cause better
compression.

The algorithm 1 uses a list .# of local minima of
Emuw(M) for a specific quality factor to compress an
image. In line 4, we try every mutation M from the list ./#
and choose the one that results in the lowest cost as
defined in (12).

Algorithm 1: Brute Force JPEG compression using mutations

1 : Alist of local minima of Emu(M) for the given quality factor.

2 foreach component in [Y, Cr, Cb] do

3 foreach block B, in component do

M* = argmin C(Round(TEenc(Bo)+M))
M

X = Round(Tene(Bo) + M*)

Pass X to entropy coding stage

vYMeux

N N A

7. GPU Based Algorithm

Unfortunately the brute force algorithm is very slow.
That is because of extensive computational load for
calculating the block error and number of bits in the
entropy-coded blocks. For example, it takes about 2 hours
on a MacBook Pro to compress the “Fruits” image in Fig.
6. This makes the brute force algorithm impractical for
most applications.

For each block, the number of bits in the entropy-
coded block needs to be calculated ‘m’ times (m: number
of mutations). The only way to know the number of bits is

to actually do the entropy coding and then count the
number of bits in the coded block.

We can improve the speed significantly by running the
algorithm on powerful GPUs. This allows us to parallelize
the process and work on multiple blocks at the same time.
Unfortunately porting the entropy coding (calculating
number of bits) to GPU platforms such as TensorFlow is
not straightforward.

To solve this problem we trained deep convolutional
neural networks to predict the number of bits needed for
entropy coding of a block. Our goal here is to solve a
regression problem: The input is a 64-D vector
representation of a mutated 8x8 block and the output is
the number of bits in the entropy-coded block. After
trying several network configurations it was seen that
networks with 1-D convolutional layers provide the best
accuracy for the regression problem. The success of 1-D
convolutional network can be attributed to the fact that in
entropy coding there is a correlation between neighboring
elements of input vector because of run-length encoding.

Since in JPEG standard, different Huffman tables are
used for luma and chroma, we need to train 2 different
networks. In practice we used the same network structure
(Fig. 4) for both luma and chroma but trained them
separately with different sets of sample blocks. As an
example, for quality factor 80, we used 1,107,187 training
and 123,021 test samples created from 218 images and the
mean absolute error (MAE) over test samples after
rounding the output was 0.369 for luma (Y) network and
0.028 for chroma (CrCb).

1-D Conv. 1-D Conv.
Kernel:15 Kernel:5 Dense Dense
Mé‘lféid —»| Stride:t |-»| Stride:t [»| 512 || 256 —»Bé‘i’t‘;k
Depth:32 Depth:64 RelLU RelLU
RelLU RelLU

Fig. 4: The Neural Network configuration used to estimate the
number of bits in the entropy-coded blocks. Total Network
Parameters: 2,240,065.

After training the networks with many samples, we can
now plug them in our GPU based pipeline for the
encoding process. Fig. 5 summarizes the final GPU based
pipeline that can be used to compress images much faster
than the brute force algorithm. As you can see instead of
working serially on every block, we process one block-
column of the image at a time. For example, for an
800x800 image, a column of 800x8 (100 8x8 blocks) is
processed as one batch with a total of 100 batches to
complete the process for each luma/chroma component of
the image.

8. Mining Mutations

As explained above the mutation error function
Emu(M) has many local minima which is seen in Fig. 3
for one dimension. In 64-D space, shape of this function
becomes extremely complex which results in many more
local minima. Our optimization method in this paper
depends on having a list of these local minima.
Unfortunately, there is no straightforward method of
finding all these local minima; mostly because Emu(M) is
a non-differentiable piecewise function. Our approach is
inspired by the “Particle Swarm Optimization” [31], with
2 major differences: first, we are looking for local minima
instead of the global minimum therefore we don’t share
information between particles, and second, each particle’s
movement in our space is defined by coordinate descent.
Both particle swarm and coordinate descent algorithms
are known to work well with non-differentiable functions.
Once the mutations are found, they can be reused again
and again to compress different images.

This section explains the process of “mining” local
minima that are applied as mutations to the DCT
coefficients before rounding and entropy coding. This
process is made up of the following four stages:

8.1. Initial Vectors

The potential mutations are initialized with a uniformly
distributed random 64-D vector from a region near the
global minimum of Emw(M) at M=0. We tried different
types of bounds for the region and used the one that
resulted in most number of mutations in least amount of
time. For each block B,, this region contains all points Mo
with L1-norm less than or equal to L1-norm of encoded
original block:

[Mo|1 = [Xol|1 (13)

where: Xo = TEnc(Bo). The L1-norm here encourages
sparsity and smaller values for the mutated encoded
blocks (Xo + M), both of which result in better entropy
coding compression. For each block of every image, we
create several initial vectors (swarm of particles)

8.2. Coordinate Descent

For each initial vector Mo, we start a coordinate decent
on the mutation error function Emu(M) to reach to a local
minimum. In practice we do one coarse coordinate
descent (High particle speed) followed by another one
with finer resolution (decelerating particles to stop at local
minimum).

The result of coordinate descent for each particle is
kept as a candidate mutation only if:

1. It is not too close to an existing local minimum

already found.

2. It is not too close to the global minimum at M=0.
3. The rounded mutated block error is less than a
predefined margin:

E(Round(Xo + M)) < Emax (14)

Where Emax is based on average block reconstruction
errors for standard JPEG encoding with a specific quality
factor.

8.3. Repeating and merging

In practice we ran this program in parallel processes on
many images to get several lists of candidate mutations.
These lists are then merged to get a large list of candidate
mutations. During the merging process we drop a

mutation if it is too close to an existing one from a
different list.

8.4. Filtering out rarely used mutations

We use the merged list of mutations to compress many
image files counting the number of times each mutation in
the list reduces the reconstruction error. The mutations
with highest success rates are then kept as our final list of
mutation.

The mining process is a very time-consuming task. As
an example it takes about 5 days to mine mutations from
130 images (with image sizes around 512x340) on a
server with 36 cores running 3.0 GHz Intel Xeon
processors (AWS c5.9xlarge instances)

We process one column of the
image at a time. Number of
8x8 blocks in one columnis r.

All mutated blocks
(Xo+M) as vectors of size
64 for all r blocks in the

(The mutated
blocks resulting
in lowest
encoding cost.

Reconstructed blocks after
decoding. This is Tpec(Xot+M).

input column.
Input Image
L 7/
B | [EECRERY| x, XM
rx8x8 rx8x8 64

2 lists of mined mutations for
luma & chroma

mx64

Indexes of k lowest mutation errors
for each one of the r blocks.

k Lowest Indexes

kxr

MSE and Get k lowest

mxrx64

Round(Clip(IDCT(X*Q)+128))

rx8x8 rx8x8
V
These
(m.r)x8x8 (m.r)x8x8 blocks are
now ready for
entropy

coding.

2 trained CNNs for
luma & chroma

Gather

Previous DC
values and

errors in
leach column

Reshape

The k mutated blocks
resulting in lowest
mutation errors for each

one of r input blocks.

ZZ reorder

(k.r)x64

(k.r)x64
DC values of the blocks in
previous column. See JPEG

. k Lowest MSEs
Using the reconstructed

and original blocks to

calculate the mutation
error function Emut(M) for m

mutation and r block.

Values of k lowest
mutation errors for each
one of r blocks.

rx1 entropy coding for details.

Reshape

Estimated number of bits
for k mutated blocks with
lowest mutation errors for
each one of the r blocks.

Encoding Cost for k mutated
blocks with lowest mutation errors
for each one of r input blocks.

Encoding m
Costs
Indexes of best mutations
kxr (Lowest Cost) for each one

rx1 of the r input blocks.

Fig. 5: GPU based compression pipeline. This pipeline works on a single “block-column” at a time. First, the encoding
transformations are applied to the blocks in the column. All the mutations are added to all encoded blocks to form the 3D tensor
(XotM). It is then used to calculate the Mutation Error Function Emu(M). To make this process faster when the number of mutations
is large, we use only the top K mutations with lowest errors. The selected mutated blocks are then fed to the CNN to estimate the
number of bits N(X). The cost for each mutated block is then calculated and the blocks with lowest costs are selected to be passed to
the entropy coding stage. The rest of encoding process is exactly similar to the JPEG standard.

Also note that since there are 2 different quantization
matrixes for luma and chroma components of the image,
we need to mine 2 sets of mutations.

At the end of the mining process we get 2 sets of
mutations for luma and chroma components. Each set can
be represented by an mx64 matrix where m is the number
of mutations found.

This process must be repeated once for every specific
quantization matrix. Since the JPEG quality factor
modifies the quantization matrix, we mine new sets of
mutations for different quality factors. Once we have
these lists of mutations, we can compress any image using
the same list of mutations.

9. Experimental Results

For different stages of mining, training, and parameter
searches, we used a raw image data set consisting of 218
uncompressed images downloaded from different
websites. The images cover a wide range of different
categories and imaging conditions.

We also used 10 raw images from the publicly
available IVC dataset [32] for evaluation purposes. These
images were not used in any stage of mining or training.
Fig. 6 shows a side-by-side comparison of the
compression and quality results as Standard JPEG and our
algorithm (Mutated JPEG) were used to compress one of
these test images at quality factor 80.

To evaluate the quality performance we used SSIM
[23] which gives a measure of similarity between the
reconstructed JPEG image and the original raw image.
For comparison, we also included other error measures
such as MSE and PSNR. For rate performance evaluation
we use the JPEG file size and bit per pixel (BPP). Fig. 7
shows the rate-distortion comparison between our
algorithm and standard JPEG.

Rate-Distortion (PSNR)
37 250
—e—Standard JPEG

—e—Mutated JPEG

3 200

w
w

150

PSNR (dB)
w
@
MSE

100

N
[t

50
27

25 0
0 1 2 3 4 0 1
BPP

Rate-Distortion (MSE)

Standard JPEG
SSIM: 0.948300
File Size: 64,163
BPP: 1.958099

Mutated JPEG
SSIM: 0.948304
File Size: 54,443

BPP: 1.661469

Fig. 6: Side by side comparison of a compressed sample image
(from our test image set). The image was compressed with a
quality factor of 80. Our method shows an improvement of more
than %15 in compression ratio without degrading quality.

We used Tensorflow framework for the implementation
of the convolutional neural networks and entire encoding
pipeline.

Using the mining method explained in previous
section, we created different sets of mutations for
different JPEG quality factors. We used about 130 images
during the mining process and then merged and filtered
them using 218 images.

We used all 218 images to create training and test
datasets and used them to train 2 CNN models for each
quality factor.

We then implemented a parameter search algorithm
and used it with 218 images to find the best values of A
(optimized for compression ratio) in equation (12) for
different JPEG quality factors.

Table 1 compares the average results of compression
for the 10 test images at different quality factors. The A

Rate-Distortion (SSIM)

—e—Standard JPEG
—s—Mutated JPEG

—e—Standard JPEG
—e—Mutated JPEG 0.95

2 3 4 0 1 2 3 4
BPP BPP

Fig. 7: The rate-distortion charts with PSNR (left), MSE (middle), and SSIM (right) vs. bits per pixel (BPP). These values are
calculated at 9 different quality factors (10 .. 90). As you can see the improvement in compression increases as the quality factor

increases.

Quality Standard JPEG Mutated JPEG

Factor BPP SSIM BPP SSIM
10 0.44446 0.69070 0.43181 0.69161
20 0.66463 0.77481 0.63345 0.77496
30 0.86674 0.81379 0.81258 0.81404
40 1.04196 0.83615 0.97574 0.83627
50 1.19712 0.85212 1.11477 0.85220
60 1.41758 0.86716 1.29916 0.86725
70 1.72878 0.88412 1.57602 0.88421
80 2.29902 0.90508 2.04648 0.90515
90 3.74981 0.93602 3.32551 0.93605

Table 1: The average compression (BPP) and quality (SSIM)
values over 10 test images for standard JPEG and Mutated JPEG
at different quality factors.

values for the mutated JPEG algorithm at each quality
factor were adjusted to get almost the same SSIM value as
the Standard JPEG. This means the algorithm was
optimized for compression. As you can see in all cases the
SSIM values are slightly better than standard JPEG while
the BPP values are reduced significantly compared to
Standard JPEG.

Fig. 8 shows the compression improvement at different
quality factors.

We also tried the Mutated JPEG algorithm on a variety
of raw images downloaded from the internet. Our best
results (with up to %26 improvement in compression) are
included in the Supplementary Materials accompanying
this paper.

Average Compression Improvement (%)
for 10 Test Images
14

12

1153

10

8
5
©
i
~
0

Q10 Q20 Q30 Q40 QS50 Q60 Q70 Q80 QSO
Quality Factor

o

Compression Improvement (%)
>

N

Fig. 8: Average Compression improvement on 10 test images at
different quality factors. The A values for luma and chroma
components were adjusted for best compression ratio while
keeping the quality (average SSIM values) slightly better than
the standard JPEG.

10. Conclusion

We have shown that applying small mutations to the
DCT coefficient values in JPEG encoding pipeline can
result in better compression ratios and better quality. We
also have provided a systematic method to efficiently find
the best mutations and incorporate them in a new GPU
based JPEG encoding pipeline. We have also shown how
we can use convolutional neural networks to estimate the
number of bits in an entropy-coded block and improve the
performance of the encoding pipeline.

In future work we would like to investigate the
performance improvements by combining the methods of
this paper with those of [27] and [28]. We are also
interested in applying the concept of mutations to modern
video encoding standards such as AVC and HEVC.

References

[1] W.B. Pennebaker and J. L. Mitchell. JPEG: Still image data
compression standard. Springer Science & Business Media.
(1992)

[2] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG
2000 still image compression standard. IEEE Signal processing
magazine 18, no. 5, pp. 36-58. (2001)

[3] F. Bellard. BPG Image format. BPG website: https://
bellard.org/bpg/. (2014)

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
volume 521, pp. 436-444. (2015)

[5] A. Krizhevsky, 1. Sutskever, and G. E. Hinton. /mageNet
Classification with Deep Convolutional Neural Networks. In
NIPS, pp. 1097-1105. (2012)

[6] W. Gevaert, G. Tsenov, and V. Mladenov. Neural networks
used for speech recognition. Journal of Automatic Control. 20.
10.2298/JAC1001001G. (2010)

[7] D. Silver and D. Hassabis. AlphaGo: Mastering the ancient
game of Go with Machine Learning. Google Al Blog. (2016)

[8] C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression
Artifacts Reduction by a Deep Convolutional Network. ICCV.
(2015)

[9] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of jpeg-
compressed images. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2764-2772.
(2016)

[10] J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. ECCV. Springer, Cham. pp.
628-644. (2016)

[11] C. Dong, C.C. Loy, K. He, and X. Tang. Learning a deep
convolutional network for image super-resolution. ECCV, pp.
184-199. (2014)

[12] C.Y. Yang, C. Ma, and M.H. Yang. Single-image super-
resolution: A benchmark. ECCV, pp. 372-386. (2014)

[13] C. Wang, J. Zhou, and S. Liu. Adaptive non-local means
filter for image deblocking. Signal Processing: Image
Communication, 28(5): pp. 522-530. (2013)

[14] W Shi, J. Caballero, F. Huszar, J. Totz, A.P. Aitken, R.
Bishop, D. Rueckert, and Z. Wang. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional
neural network. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1874-1883.
(2016)

[15] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning
convolutional networks for content-weighted image
compression. arXiv preprint arXiv:1703.10553. (2017)

[16] J. Ballé, V. Laparra, and E.P. Simoncelli. End-to-end
optimized image compression. arXiv preprint arXiv:1611.01704.
(2016)

[17] L. Theis, W. Shi, A. Cunningham, and F. Huszar. Lossy
image compression Wwith compressive autoencoders. arXiv
preprint arXiv:1703.00395. (2017)

[18] F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao. 4n
end-to-end compression framework based on convolutional
neural networks. IEEE Transactions on Circuits and Systems for
Video Technology. (2017)

[19] G. Toderici, S.M. O'Malley, S.J. Hwang, D. Vincent, D.
Minnen, S. Baluja, M. Covell, and R. Sukthankar. Variable rate
image compression with recurrent neural networks. arXiv
preprint arXiv:1511.06085. (2015)

[22] D.M. Monro, and B.G. Sherlock. Optimum DCT
quantization. In IEEE Data Compression Conference, pp.
188-194. (1993)

[23] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing 13, no. 4 pp.
600-612. (2004)

[24] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale
structural similarity for image quality assessment. In IEEE The
Thrity-Seventh Asilomar Conference on Signals, Systems &
Computers, vol. 2, pp. 1398-1402. (2003)

[25] L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: a
feature similarity index for image quality assessment. IEEE
transactions on Image Processing 20, no. 8, pp. 2378-2386.
(2011)

[26] J. Alakuijala, R. Obryk, O. Stoliarchuk, Z. Szabadka, L.
Vandevenne, and J. Wassenberg. Guetzli: Perceptually Guided
JPEG Encoder. arXiv preprint arXiv:1703.04421. (2017)

[27] M. Hopkins, M. Mitzenmacher, and S. Wagner-Carena.
Simulated annealing for jpeg quantization. arXiv preprint
arXiv:1709.00649. (2017)

[29] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G.
Quan. DeepN-JPEG: a deep neural network favorable JPEG-
based image compression framework. arXiv preprint
arXiv:1803.05788. (2018)

[30] R. Hiibner and A. Schobel. When is rounding allowed? A
new approach to integer nonlinear optimization. In ORP3
MEETING, CA DIZ, September, pp. 13-17. (2011)

[31] J. Kennedy. Particle swarm optimization. In Encyclopedia
of machine learning, pp. 760-766. Springer, Boston, MA. (2011)
[32] P. L. Callet and F. Autrusseau. Subjective Quality
Assessment: IVC Database. (2006)

