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Abstract—Channel Coding is the technique that enables re-
liable delivery of digital data over unreliable communication
channels. For most high performance channel coding techniques,
the existing classical algorithms are computationally expensive,
making them impractical for throughput-demanding applications
with large code sizes. Today’s Noisy Intermediate-Scale Quantum
(NISQ) computers, although limited due to a modest number of
qubits, short coherence time, and poor gate fidelity, are useful
tools for exploring and experimenting with possible solutions to
a wide variety of computational problems.

In this paper we show how careful initialization of qubits
combined with a simple quantum circuit, enables us to perform
channel decoding for different linear block codes. We first explain
our novel qubit initialization technique which we call “Quantum
Soft Decision”. We then show how to build a simple quantum
circuit based on the Generator or Parity-check matrix using
another technique called “Quantum Generator”. Using these
universal concepts, we implement Quantum Decoders for two
different types of linear block codes, namely Hamming codes
and Polar codes. Our simple quantum circuits achieve decoding
performances comparable with best classical algorithms such as
Maximum Likelihood (ML) for Hamming codes and Successive
Cancellation (SC) and Successive Cancellation List (SCL) for
Polar codes. Using Qiskit, we implemented and compared the
decoding performance at different code sizes and noise levels
on simulated (both ideal and noisy) quantum computers. Also
using Amazon Braket, we verified the algorithm on real quantum
computers.

Index Terms—Quantum Channel Decoding, Polar code, Ham-
ming code, Quantum Soft Decision, Quantum Generator, Succes-
sive Cancellation, 5G, Channel Coding

I. INTRODUCTION

Quantum algorithms utilize essential features of quantum

physics such as superposition and entanglement to solve some

problems faster than classical computers. For example, Shor’s

algorithm [1] and Grover’s algorithm [2] are two of the

best-known quantum algorithms that solve problems such

as factoring large numbers and searching unstructured data

respectively. As another example, Quantum Approximate Opti-

mization Algorithm (QAOA) [3] is a hybrid quantum/classical

algorithm for approximating solutions to combinatorial opti-

mization problems. Quantum algorithms are usually described

and implemented in the circuit model where a quantum circuit

acts on one or more qubits using quantum operators called

gates.

The goal of channel coding is to devise codes that can

be transmitted efficiently while enabling some error control

capabilities such as error detection and error correction. Linear

block codes are a category of codes with 2 main properties:

They are applied to source bits in blocks and they are linear,

which means modulo-2 sum of any two code-words is also

a valid code-word. The Hamming codes [4] and Polar codes

[5] are two different linear block codes used in this paper to

demonstrate our quantum channel decoding approach.

Hamming code, a linear block code invented by Richard

W. Hamming [4] in 1950, can detect one-bit or two-bit errors

and correct one-bit errors. It is widely used in computer

memory (i.e. RAM) where multiple bit errors happen very

rarely. In Parity-check matrix of Hamming code, any two

columns are pairwise linearly independent. The most accu-

rate classical Hamming decoding algorithm is the exhaustive

Maximum Likelihood (ML) whose computational complexity

grows exponentially with message size.

Polar code is another type of linear block code which was

proposed by Erdal Arikan [5] in 2009 and became famous

due to some of its desirable characteristics. It can be proved

explicitly that Polar codes approach Shannon capacity for a

wide range of communication channels. The encoding process

is significantly simpler compared to other methods such as

Low Density Parity Check (LDPC) [6], [7]. However, due to

decoding inefficiency for large code lengths, Polar codes are

currently used only for control channels in the 5G standard

[8], [9].

In this paper we demonstrate how to build quantum circuits

capable of solving channel decoding problems by exploiting

a) quantum superposition for initialization of the qubits and

b) quantum entanglement for quantum implementation of a

“Generator” or “Parity-check” matrix.

Although the quantum circuits presented here do not achieve

quantum advantage, the methods explained for “Quantum

Soft Decision” and “Quantum Generator” could be used in

future research to improve performance and possibly achieve

quantum advantage over the classical decoding algorithm.

II. MOTIVATION AND BACKGROUND

As mentioned before, the best Hamming decoding algo-

rithms are based on the computationally expensive Maximum

Likelihood approach and the existing classical decoding algo-

rithms for Polar codes are sequential or partially-sequential

in nature [10]. The Successive Cancellation (SC) [5] and

Successive Cancellation List (SCL) [11] algorithms involve

navigating through a binary tree in a depth-first-search manner.
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Fig. 1: Simplified communication pipeline for Polar code. Hamming codes use a similar (simpler) pipeline

At large code lengths, the decoding complexity leads to higher

latency which eventually makes Polar codes impractical for

most throughput-demanding applications.

In the rest of this document we consider bit-streams as row

vectors with first element representing the most significant

bit. All vector and matrix multiplications involving bit-streams

are based on modulo-2 arithmetic unless otherwise specified.

We use the (n, k) notation to specify a channel coding

configuration with n-bit code-words and k-bit messages. We

also use Frame Error Rate (FER) to measure the performance

of different decoding algorithms where each k-bit message is

considered a single frame.

A. Hamming codes: Problem Formulation

Hamming codes usually use code-words of size n = 2r− 1
bits for messages of length k = 2r− r−1 bits for any integer

r ≥ 2. Consider a k-bit message u being encoded based on

the Hamming code Generator matrix G(n,k) ∈ {0, 1}k×n to

create the n-bit code-word x:

x = u.G(n,k) (1)

For the example of (7, 4) Hamming code, the 4× 7 Gener-
ator matrix G(7,4) and the 3× 7 Parity-check matrix H(7,4)
are:

G(7,4) =

⎡
⎢⎣
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

⎤
⎥⎦ (2)

H(7,4) =

⎡
⎣1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦ (3)

The code-word x is then modulated and transmitted over

the communication channel. For simplicity and without loss

of generality, we are assuming Binary Phase Shift Keying

(BPSK) modulation which uses +1 and -1 to signal bit values

0 and 1 respectively. At the receiving side, this signal is

subject to an Additive White Gaussian Noise (AWGN) and we

receive the noisy signal r ∈ R
n. This signal is then fed to the

Hamming decoding algorithm which outputs the reconstructed

bit-stream û.

B. Polar codes: Problem Formulation
Fig. 1 shows a simplified pipeline for Polar coding with

message length k and code-word length n = 2d. First the mes-

sage needs to be embedded in the bit-stream which involves

inserting n− k zeros at frozen bit indexes and reordering the

message bits to create the bit-stream u. Throughout the rest

of this paper we use F and M for the set of frozen and

message bit indexes respectively, both of which are derived

from a predefined “Reliability Sequence” for Polar codes [8],

[9]. To obtain the transmitted code-word x, the bit-stream u
is multiplied by the Polar Generator matrix Gn:

x = u.Gn (4)

where the Polar code Generator matrix is defined as:

Gn = G2d = G2
⊗d and G2 =

[
1 0
1 1

]
(5)

The code-word x is then modulated and transmitted over

the communication channel and subjected to AWGN at the

receiver where we receive the noisy signal r ∈ R
n. This signal

is then fed to the Polar decoding algorithm which outputs

the reconstructed bit-stream û. By removing the frozen bits

from û (using the indexes in F) and reordering the remaining

message bits (using the indexes inM), we can obtain the k-bit

predicted message.

III. QUANTUM CHANNEL DECODER CIRCUIT DESIGN

As explained in the previous sections, the goal of a channel

decoding algorithm is to output the reconstructed message û,

given the noisy received signal r. To implement a quantum

algorithm, first we need to find a way to initialize our qubits

in superposition states based on the analog values received

in r, and second, we need to use a set of quantum gates to

simulate the effect of Generator or Parity-check matrix.

A. Quantum Soft Decision
Assuming a noise power of σ2, we can calculate the

probability of jth BPSK-modulated code-word bit being ’1’

as:

P (xj = 1|rj) = 1

1 + e2rj/σ
2 (6)
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Now suppose an Ry(θj) gate is applied to the jth qubit in

its initial state |0〉. The matrix representation of Ry(θj) is:

Ry(θj) =

[
cos θj/2 − sin θj/2
sin θj/2 cos θj/2

]
(7)

The new state of the qubit after applying Ry(θj) is:

|ψθj 〉 =
[
cos θj/2 − sin θj/2
sin θj/2 cos θj/2

] [
1
0

]
=

[
cos θj/2
sin θj/2

]
(8)

If we measure this qubit in computational basis, we get a ’0’
with probability cos2 θj/2, and ’1’ with probability sin2 θj/2:

P (qmeasj = 1|θj) = |〈1|ψθj 〉|2 =
( [

0 1
]
.

[
cos θj/2
sin θj/2

])2

⇒ P (qmeasj = 1|θj) = sin2 θj/2 (9)

Now using (6) and (9) we can initialize the jth qubit in a

superposition state based on value of the jth received signal

rj :

P (qmeasj = 1|θj) = P (xj = 1|rj)
⇒ sin2 θj/2 =

1

1 + e2rj/σ
2

Solving for θj :

θj = 2arcsin

√
1

1 + e2rj/σ
2 (10)

B. Quantum Generator

As mentioned before, the multiplication of a bit-stream

vector by a Generator or Parity-check matrix uses modulo-

2 arithmetic which is similar to the XOR operations (i.e.

1⊕1 = 0). This means the whole matrix multiplication process

can be implemented using a set of XOR gates in a binary logic

circuit. The entries in G or H matrices specify the pairs of

bits for each XOR gate and the order these gates are applied.

The closest quantum gate to the logical XOR gate is the

“Controlled-Not” gate CX which entangles its two input

qubits. Algorithm 1 receives a Generator matrix as input and

creates a list of qubit pairs for entanglement. Each pair in

the list specifies the two qubits to be entangled (using CX
gate) and the order in the list specifies the order these gates

are applied. The state of qubits after these gates is a “soft”

representation of û. A similar algorithm can be implemented

for Haming codes.

Fig. 2a shows the quantum circuit for the (8,4) Polar code.

Notice that q0, q1, q2, and q4 represent the frozen bits in the

(8,4) Polar code. Fig. 2b shows the simplified version. Line

10 in Algorithm 1 removes the qubit pairs from PG when the

target qubit is frozen and the control qubit is not frozen.

Using the ML approach we can improve the performance of

our quantum decoder significantly at the cost of slight increase

in computational complexity. In ML decoding, we first create

a list of code-words X̂ containing a code-word x̂ for each

predicted message û in the list returned by the quantum circuit.

Each code-word x̂ is obtained by encoding the predicted bit-

streams û using the Generator matrix.

Algorithm 1 Quantum Generator for (n,k) Polar code

Input: n× n Generator matrix Gn, k

Output: PG � A list of qubit pairs

1: D ← log2 n � n is always a power of 2

2: PG ← [] � Initialize with empty list

3: for d← 0 to D − 1 do
4: for s← 0 to 2d − 1 do
5: for i← s to n− 1 step 2d+1 do
6: Add (i+ 2d, i) to PG

7: end for
8: end for
9: end for

10: Remove the pairs with unused frozen qubits from PG

11: return PG

(a) Quantum Circuit for (8,4) Polar code

(b) Simplified Circuit for (8,4) Polar code

Fig. 2: Quantum circuits for (8,4) Polar code. (a) The circuit includes

qubits corresponding to the frozen bits of Polar code. (b) A simplified

version of the circuit with the frozen qubits removed. In this case the

û bit-stream can be retrieved by inserting zeros at the missing frozen

bit indexes (ûf = 0, ∀f ∈ F ).

Once we have the list of predicted code-words X̂ , we

can calculate the correlation between these code-words and

the noisy received signal r and pick the code-word with the

highest correlation.

IV. EXPERIMENTS

We used different classical algorithms for Hamming and

Polar codes and compared the decoding performance with our

quantum approach at different code sizes and Eb/N0 ratios.

As you can see in tables I, II, and Fig. 3, the performance of

quantum decoder is very close to the best classical algorithms

(i.e. ML for Hamming and SCL for Polar codes). In these
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(a) (15,11) Hamming code (b) (16,11) Polar code

Fig. 3: Frame Error Rate at different Eb/N0 ratios for (a) (15,11)

Hamming code with Hard-Decision (HD), Maximum Likelihood

(ML), and Quantum decoding and (b) (16,11) Polar code with

Successive Cancellation (SC), Successive Cancellation List (SCL),

and Quantum decoding

tables and charts, HD is the Hard Decision method, ML is the

Maximum Likelihood algorithm. “No Coding” represents the

case where no channel coding method was used. SC and SCL

represent Successive Cancellation and Successive Cancellation

List algorithms for Polar decoding respectively.

Note that the Maximum Likelihood algorithm provides the

best possible solution for the Hamming decoding problem as

it is based on exhaustive search. For Polar codes, SCL is

considered the best algorithm.

TABLE I: FER for different Hamming Decoders

Hamming code Eb/N0 Frame Error Rate (FER)
(n,k) (dB) HD ML Quantum

0 0.261960 0.178925 0.179491
(7,4) 4 0.036397 0.011786 0.011794

8 0.000271 0.000012 0.000012
0 0.518580 0.385033 0.385035

(15,11) 4 0.062622 0.016960 0.016960
8 0.000147 0.000003 0.000003

TABLE II: FER for different Polar Decoders

Polar code Eb/N0 Frame Error Rate (FER)
(n,k) (dB) SC SCL (L=4) Quantum

0 0.245138 0.245138 0.245572
(8,5) 4 0.025443 0.025443 0.025446

8 0.000127 0.000127 0.000127
0 0.172802 0.164553 0.167320

(8,4) 4 0.009933 0.008466 0.008500
8 0.000005 0.000003 0.000003
0 0.324273 0.315687 0.318697

(16,9) 4 0.015282 0.013819 0.013844
8 0.000001 0.000001 0.000001
0 0.381585 0.352366 0.353487

(16,11) 4 0.014791 0.010326 0.010345
8 0.000002 <0.000001 <0.000001

The error rates shown in tables I, II, and Fig. 3 are based

on Qiskit state vector simulator [12].

Table III compares the results between the ideal simulation

based on state vector and the Qiskit’s “FakeMontreal” noisy

simulation. As you can see the results are almost identical

which means our quantum circuits are robustly resistant to

different types of quantum noise.

TABLE III: FER for Ideal and Noisy Quantum Simulation

Polar code Eb/N0 Frame Error Rate (FER)
(n,k) (dB) State-Vector FakeMontreal

0 0.166900 0.164250
(8,4) 2 0.054450 0.053800

4 0.008450 0.008450
6 0.000400 0.000400
0 0.24740 0.24733

(8,5) 2 0.09793 0.09780
4 0.02627 0.02627
6 0.00467 0.00467

We also tried decoding different Hamming and Polar code

configurations using our quantum decoder circuits on different

quantum computers and managed simulators available on

Amazon Braket [13]1.
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Quantum Circuits

Problem
Channel Coding is the technique that enables 
reliable delivery of digital data over unreliable 
communication channels.

Code-words are obtained using a generator matrix: 
 (with modulo-2 additions)x = u . G

G(7,4) =
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

G4 = G2 ⊗ G2 =
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

Hamming Code                                            Polar Code
At the receiver, the noisy received signals must be 
decoded to obtain the original message. 
Computational complexity of current classical 
decoding algorithms grow exponentially with code 
size.

G2d = G⊗d
2

Quantum Approach
1) Quantum Soft Decision 

Use superposition to embed probabilistic 
information into qubit: 

Ry gate: 

 

with: 

 

Ry(θ) = e(−iθY/2) = [cos θ/2 −sin θ/2
sin θ/2 cos θ/2 ]

θj = 2 arcsin 1
1 + e2rj/σ2

jth received signal 

Noise power

rj →
σ2 →

2) Quantum Generator 
Use entanglement to mimic the generator matrix 
application (CNOT gates) 
Design algorithms to generate a quantum circuit 
given a generator matrix.

Hamming Decoder for (7,4)

Polar Decoder for (8,4)

Results

•  is an analog value representing the received  
noisy signal for the jth bit.It is used to initialize 
qubits. 

• Each CNOT gate mimics an XOR operation 
(modulo-2 addition) 

• Measurements in computational basis provides 
the most likely decoding solution.

rj

Frame Error Rate at different Eb/N0 ratios with 
Hard-Decision (HD), Maximum Likelihood 
(ML), and Quantum decoding for (15,11) 
Hamming code with fixed σ2 

Frame Error Rate at different Eb/N0 ratios with 
Successive Cancellation (SC), successive 
cancellat ion List (SCL) and quantum 
decoding for (16,11) Polar code with fixed σ2 
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