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Abstract—Channel Coding is the technique that enables re-
liable delivery of digital data over unreliable communication
channels. For most high performance channel coding techniques,
the existing classical algorithms are computationally expensive,
making them impractical for throughput-demanding applications
with large code sizes. Today’s Noisy Intermediate-Scale Quantum
(NISQ) computers, although limited due to a modest number of
qubits, short coherence time, and poor gate fidelity, are useful
tools for exploring and experimenting with possible solutions to
a wide variety of computational problems.

In this paper we show how careful initialization of qubits
combined with a simple quantum circuit, enables us to perform
channel decoding for different linear block codes. We first explain
our novel qubit initialization technique which we call “Quantum
Soft Decision”. We then show how to build a simple quantum
circuit based on the Generator or Parity-check matrix using
another technique called “Quantum Generator”. Using these
universal concepts, we implement Quantum Decoders for two
different types of linear block codes, namely Hamming codes
and Polar codes. Our simple quantum circuits achieve decoding
performances comparable with best classical algorithms such as
Maximum Likelihood (ML) for Hamming codes and Successive
Cancellation (SC) and Successive Cancellation List (SCL) for
Polar codes. Using Qiskit, we implemented and compared the
decoding performance at different code sizes and noise levels
on simulated (both ideal and noisy) quantum computers. Also
using Amazon Braket, we verified the algorithm on real quantum
computers.

Index Terms—Quantum Channel Decoding, Polar code, Ham-
ming code, Quantum Soft Decision, Quantum Generator, Succes-
sive Cancellation, 5G, Channel Coding

I. INTRODUCTION

Quantum algorithms utilize essential features of quantum
physics such as superposition and entanglement to solve some
problems faster than classical computers. For example, Shor’s
algorithm [1] and Grover’s algorithm [2] are two of the
best-known quantum algorithms that solve problems such
as factoring large numbers and searching unstructured data
respectively. As another example, Quantum Approximate Opti-
mization Algorithm (QAOA) [3] is a hybrid quantum/classical
algorithm for approximating solutions to combinatorial opti-
mization problems. Quantum algorithms are usually described
and implemented in the circuit model where a quantum circuit
acts on one or more qubits using quantum operators called
gates.

The goal of channel coding is to devise codes that can
be transmitted efficiently while enabling some error control
capabilities such as error detection and error correction. Linear
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block codes are a category of codes with 2 main properties:
They are applied to source bits in blocks and they are linear,
which means modulo-2 sum of any two code-words is also
a valid code-word. The Hamming codes [4] and Polar codes
[5] are two different linear block codes used in this paper to
demonstrate our quantum channel decoding approach.

Hamming code, a linear block code invented by Richard
W. Hamming [4] in 1950, can detect one-bit or two-bit errors
and correct one-bit errors. It is widely used in computer
memory (i.e. RAM) where multiple bit errors happen very
rarely. In Parity-check matrix of Hamming code, any two
columns are pairwise linearly independent. The most accu-
rate classical Hamming decoding algorithm is the exhaustive
Maximum Likelihood (ML) whose computational complexity
grows exponentially with message size.

Polar code is another type of linear block code which was
proposed by Erdal Arikan [5] in 2009 and became famous
due to some of its desirable characteristics. It can be proved
explicitly that Polar codes approach Shannon capacity for a
wide range of communication channels. The encoding process
is significantly simpler compared to other methods such as
Low Density Parity Check (LDPC) [6], [7]. However, due to
decoding inefficiency for large code lengths, Polar codes are
currently used only for control channels in the 5G standard
(8], [9].

In this paper we demonstrate how to build quantum circuits
capable of solving channel decoding problems by exploiting
a) quantum superposition for initialization of the qubits and
b) quantum entanglement for quantum implementation of a
“Generator” or “Parity-check” matrix.

Although the quantum circuits presented here do not achieve
quantum advantage, the methods explained for “Quantum
Soft Decision” and “Quantum Generator” could be used in
future research to improve performance and possibly achieve
quantum advantage over the classical decoding algorithm.

II. MOTIVATION AND BACKGROUND

As mentioned before, the best Hamming decoding algo-
rithms are based on the computationally expensive Maximum
Likelihood approach and the existing classical decoding algo-
rithms for Polar codes are sequential or partially-sequential
in nature [10]. The Successive Cancellation (SC) [5] and
Successive Cancellation List (SCL) [11] algorithms involve
navigating through a binary tree in a depth-first-search manner.
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Fig. 1: Simplified communication pipeline for Polar code. Hamming codes use a similar (simpler) pipeline

At large code lengths, the decoding complexity leads to higher
latency which eventually makes Polar codes impractical for
most throughput-demanding applications.

In the rest of this document we consider bit-streams as row
vectors with first element representing the most significant
bit. All vector and matrix multiplications involving bit-streams
are based on modulo-2 arithmetic unless otherwise specified.
We use the (n,k) notation to specify a channel coding
configuration with n-bit code-words and k-bit messages. We
also use Frame Error Rate (FER) to measure the performance
of different decoding algorithms where each k-bit message is
considered a single frame.

A. Hamming codes: Problem Formulation
Hamming codes usually use code-words of size n = 2" — 1
bits for messages of length k = 2" —r — 1 bits for any integer
r > 2. Consider a k-bit message u being encoded based on
the Hamming code Generator matrix G (n,x) € {0,1}"*" to

create the n-bit code-word x:
r = u.G(nvk)

(I

For the example of (7,4) Hamming code, the 4 x 7 Gener-
ator matrix G'(7,4) and the 3 x 7 Parity-check matrix H/z 4)
are:

1110000
1001100

Goo=1o 1 01 01 0 @
110100 1
10101 01

Hao=10 1 1 00 1 1 3)
0001111

The code-word x is then modulated and transmitted over
the communication channel. For simplicity and without loss
of generality, we are assuming Binary Phase Shift Keying
(BPSK) modulation which uses +1 and -1 to signal bit values
0 and 1 respectively. At the receiving side, this signal is
subject to an Additive White Gaussian Noise (AWGN) and we
receive the noisy signal » € R™. This signal is then fed to the
Hamming decoding algorithm which outputs the reconstructed
bit-stream .
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B. Polar codes: Problem Formulation

Fig. 1 shows a simplified pipeline for Polar coding with
message length k and code-word length n = 2. First the mes-
sage needs to be embedded in the bit-stream which involves
inserting n — k zeros at frozen bit indexes and reordering the
message bits to create the bit-stream w. Throughout the rest
of this paper we use F and M for the set of frozen and
message bit indexes respectively, both of which are derived
from a predefined “Reliability Sequence” for Polar codes [8],
[9]. To obtain the transmitted code-word x, the bit-stream
is multiplied by the Polar Generator matrix G,:

z=uG, @
where the Polar code Generator matrix is defined as:
®d 10
Gn = sz = G2 and G2 = 1 1 (5)

The code-word « is then modulated and transmitted over
the communication channel and subjected to AWGN at the
receiver where we receive the noisy signal » € R™. This signal
is then fed to the Polar decoding algorithm which outputs
the reconstructed bit-stream @. By removing the frozen bits
from 4 (using the indexes in F) and reordering the remaining
message bits (using the indexes in M), we can obtain the k-bit
predicted message.

III. QUANTUM CHANNEL DECODER CIRCUIT DESIGN

As explained in the previous sections, the goal of a channel
decoding algorithm is to output the reconstructed message ,
given the noisy received signal r. To implement a quantum
algorithm, first we need to find a way to initialize our qubits
in superposition states based on the analog values received
in 7, and second, we need to use a set of quantum gates to
simulate the effect of Generator or Parity-check matrix.

A. Quantum Soft Decision

Assuming a noise power of o2, we can calculate the
probability of j% BPSK-modulated code-word bit being 1’
as:

1

Px; =1lrj) = 1570

(6)



Now suppose an R, (6;) gate is applied to the 5™ qubit in
its initial state |0). The matrix representation of R, (6;) is:

N _ |cosB;/2 —sind;/2
Ry (6;) = {Sin 0;/2 cosb;/2
The new state of the qubit after applying R, (6;) is:

_|cosb;/2 —sinb;/2| [1| _ [cosb,/2 3
~ |sin®;/2  cos6;/2 | |0]  |sinf;/2 ®)

If we measure this qubit in computational basis, we get a *(’
with probability cos? §;/2, and *1” with probability sin® 6, /2:

)

[vo,)

Planes =10) =10t = (01 [ 323 4] )
= P(Qmeas, = 1|9j) = sin® 9j/2 9)

Now using (6) and (9) we can initialize the j" qubit in a
superposition state based on value of the j received signal
Tj:

P(Qmeas-j = ]-‘aj) = P(wj = 1|rj)

1
s 29 I
= sin“6;/2 T3 o2/
Solving for 6;:
. 1
Gj = 2 arcsin W (10)

B. Quantum Generator

As mentioned before, the multiplication of a bit-stream
vector by a Generator or Parity-check matrix uses modulo-
2 arithmetic which is similar to the XOR operations (i.e.
1@1 = 0). This means the whole matrix multiplication process
can be implemented using a set of XOR gates in a binary logic
circuit. The entries in G or H matrices specify the pairs of
bits for each XOR gate and the order these gates are applied.

The closest quantum gate to the logical XOR gate is the
“Controlled-Not” gate C'X which entangles its two input
qubits. Algorithm 1 receives a Generator matrix as input and
creates a list of qubit pairs for entanglement. Each pair in
the list specifies the two qubits to be entangled (using C'X
gate) and the order in the list specifies the order these gates
are applied. The state of qubits after these gates is a “soft”
representation of %. A similar algorithm can be implemented
for Haming codes.

Fig. 2a shows the quantum circuit for the (8,4) Polar code.
Notice that qo, g1, g2, and g4 represent the frozen bits in the
(8,4) Polar code. Fig. 2b shows the simplified version. Line
10 in Algorithm 1 removes the qubit pairs from Pg when the
target qubit is frozen and the control qubit is not frozen.

Using the ML approach we can improve the performance of
our quantum decoder significantly at the cost of slight increase
in computational complexity. In ML decoding, we first create
a list of code-words X containing a code-word & for each
predicted message 4 in the list returned by the quantum circuit.
Each code-word & is obtained by encoding the predicted bit-
streams 4 using the Generator matrix.
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Algorithm 1 Quantum Generator for (n,k) Polar code

Input: n x n Generator matrix G, k

Output: Pg > A list of qubit pairs

1: D < logyn > n is always a power of 2
2: Pg + ] > Initialize with empty list
3: for d<~0to D —1do
4 for s < 0to 27 — 1 do
5 for i < s to n — 1 step 29! do
6 Add (i +24,4) to Pg
7 end for
8 end for
9: end for
10: Remove the pairs with unused frozen qubits from Pg
11: return Py
it Quantum Generator
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(b) Simplified Circuit for (8,4) Polar code

Fig. 2: Quantum circuits for (8,4) Polar code. (a) The circuit includes
qubits corresponding to the frozen bits of Polar code. (b) A simplified
version of the circuit with the frozen qubits removed. In this case the
4 bit-stream can be retrieved by inserting zeros at the missing frozen
bit indexes (i = 0, Vf € F).

Once we have the list of predicted code-words X, we
can calculate the correlation between these code-words and
the noisy received signal 7 and pick the code-word with the
highest correlation.

IV. EXPERIMENTS

We used different classical algorithms for Hamming and
Polar codes and compared the decoding performance with our
quantum approach at different code sizes and E}/Nj ratios.
As you can see in tables I, II, and Fig. 3, the performance of
quantum decoder is very close to the best classical algorithms
(i.e. ML for Hamming and SCL for Polar codes). In these
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Fig. 3: Frame Error Rate at different E} /Ny ratios for (a) (15,11)
Hamming code with Hard-Decision (HD), Maximum Likelihood
(ML), and Quantum decoding and (b) (16,11) Polar code with
Successive Cancellation (SC), Successive Cancellation List (SCL),
and Quantum decoding

tables and charts, HD is the Hard Decision method, ML is the
Maximum Likelihood algorithm. “No Coding” represents the
case where no channel coding method was used. SC and SCL
represent Successive Cancellation and Successive Cancellation
List algorithms for Polar decoding respectively.

Note that the Maximum Likelihood algorithm provides the
best possible solution for the Hamming decoding problem as
it is based on exhaustive search. For Polar codes, SCL is
considered the best algorithm.

TABLE I: FER for different Hamming Decoders

Hamming code | E}, /Ny Frame Error Rate (FER)

(n,k) (dB) HD ML Quantum

0 0.261960  0.178925  0.179491

(7,4) 4 0.036397 0.011786  0.011794

8 0.000271  0.000012  0.000012

0 0.518580  0.385033  0.385035

(15,11) 4 0.062622  0.016960  0.016960

8 0.000147  0.000003  0.000003

TABLE II: FER for different Polar Decoders

Polar code | E;/No Frame Error Rate (FER)

(n,k) (dB) SC SCL (L=4) Quantum
0 0.245138 0.245138 0.245572

8.5) 4 0.025443 0.025443 0.025446
8 0.000127 0.000127 0.000127

0 0.172802 0.164553 0.167320

8,4) 4 0.009933 0.008466 0.008500
8 0.000005 0.000003 0.000003

0 0.324273 0.315687 0.318697

(16,9) 4 0.015282 0.013819 0.013844
8 0.000001 0.000001 0.000001

0 0.381585 0.352366 0.353487

16,11) 4 0.014791 0.010326 0.010345
8 0.000002  <0.000001 <0.000001

The error rates shown in tables I, II, and Fig. 3 are based
on Qiskit state vector simulator [12].

Table III compares the results between the ideal simulation
based on state vector and the Qiskit’s “FakeMontreal” noisy

862

simulation. As you can see the results are almost identical
which means our quantum circuits are robustly resistant to
different types of quantum noise.

TABLE III: FER for Ideal and Noisy Quantum Simulation

Polar code | E} /Ny Frame Error Rate (FER)
(n,k) (dB) State-Vector FakeMontreal
0 0.166900 0.164250
8,4) 2 0.054450 0.053800
4 0.008450 0.008450
6 0.000400 0.000400
0 0.24740 0.24733
(8,5) 2 0.09793 0.09780
4 0.02627 0.02627
6 0.00467 0.00467

We also tried decoding different Hamming and Polar code
configurations using our quantum decoder circuits on different
quantum computers and managed simulators available on
Amazon Braket [13]'.
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Quantum Channel Decoding

Problem
Channel Coding is the technique that enables
reliable delivery of digital data over unreliable
communication channels.

Polar
Decoder

Message (kcbits)

w= [ sty ,=[',M ____ PRI CCIRRU

x=[xg,x7, s %]

Code-words are obtained using a generator matrix:
x = u . G (with modulo-2 additions)
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Hamming Code Polar Code

At the receiver, the noisy received signals must be
decoded to obtain the original message.
Computational complexity of current classical
decoding algorithms grow exponentially with code
size.

Quantum Approach

1) Quantum Soft Decision
Use superposition to embed probabilistic
information into qubit:

Ry gate:
_ p(=iovr) _ cos@/2  —sin6/2
k@) =¢ [sinH/Z cos 012
with:

7; = i received signal
62 — Noise power
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2) Quantum Generator
Use entanglement to mimic the generator matrix
application (CNOT gates)
Design algorithms to generate a quantum circuit
given a generator matrix.

Quantum Circuits

« 77 is an analog value representing the received
noisy signal for the jth bit.lt is used to initialize
qubits.

* Each CNOT gate mimics an XOR operation
(modulo-2 addition)

* Measurements in computational basis provides
the most likely decoding solution.
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Results

Frame Error Rate at different Eo/No ratios with
Hard-Decision (HD), Maximum Likelihood
(ML), and Quantum decoding for (15,11)
Hamming code with fixed o2
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